• Title/Summary/Keyword: Capacitance design

Search Result 535, Processing Time 0.027 seconds

Design and Fabrication of a High Speed Blocking Device of Transient Overvoltages for info-communication Facilities (정보통신기기용 과도이상전압 고속도차단장치의 설계 및 제작)

  • Gil, Gyeong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.1
    • /
    • pp.51-56
    • /
    • 1999
  • This paper presents a new transient overvoltage blocking device (TOBD) for info-communication facilities with low power and high frequency bandwidth. Conventional protection devices have some problems such as low frequency bandwidth, low energy capacity and high remnant voltage. In order to improve these limitations, thehybrid type TOBD, which consists of a gas tube, avalanche diodes and junction typefield effect transistors (JFETs), was designed and fabricated. The TOBD differs from the conventional protection devices in configuration, and JFETs were used as an active non-linear element and a high speed switching diode with low capacitance limits high current. Therefore the avalanche dilde with low energy capacity are protected fromthe high current, and the TOBD has a very small input capacitance. From the performance test using combination surge generator, which can produce $1.2/50\mus\;4.2kV_{max}\; 8/20\mus\; 2.1kA_{max}$, it is confirmed that proposed TOBD has an excellent protection performance in tight clamping voltage and limiting current characteristics.

  • PDF

Surface Wear Monitoring with a Non-Vibrating Capacitance Probe

  • Zanoria, E.S.;Hamall, K.;Danyluk, S.;Zharin, A.L.
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.40-46
    • /
    • 1995
  • This study concerns the design and development of the non-vibrating capacitance probe which could be used as a non-contact sensor for tribological wear. This device detects surface charge through temporal variation in the work function of a material. Experiments are performed to demonstrate the operation of the probe on a roating aluminum shaft. The reference electrode of the probe, made of lead, is placed adjacent (< 1.25-mm distance) to the shaft. Both surfaces which are electrically connected, form a capacitor. An artificial spatial variation in the work function is imposed on the shaft surface by coating a segment along the shaft circumference with a colloidal silver paint. As the shaft rotates, the reference electode senses changing contact potential difference with the shaft surface, owing to compositional variation. Temporal variation in the contact potential difference induces a current through the electrical connection. This current is amplified and converted to a voltage signal by an electoronic circuit with an operational amplifier. The magnitude of the signal decreases asymptotically with the electrode-shaft distance and increases linearly with the rotational frequency. These results are consistent with the theoretical model. Potential applications of the probe on wear monitoring are proposed.

A Study on Electrical Characteristics of a Capacitive Pressure Sensor Element to Measure the Pressure of Refrigerant of Air-Conditioner (에어컨 냉매압 측정용 정전용량형 압력센서 소자의 전기적 특성 연구)

  • Choi, Ga-Hyun;Chung, Woo-Young;Choi, Jung-Woon;Kim, Si-Dong;Min, Joon-Won
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.208-213
    • /
    • 2015
  • The purpose of this study is to optimize the design of a capacitive pressure sensor element using the simulation of electrical characteristics. The simulation of the ceramic sensor diaphragm ($Al_2O_3$) was performed by permitting pressure to change the curvature of the diaphragm. The pressure capacitance ($C_P$) was increased from 19.63 pF to 15.26 pF by applying pressure because the distance between the electrodes has been changed from $30{\mu}m$ to $15{\mu}m$. When the thickness of the diaphragm was changed to 0.46~0.52 mm, a larger capacitance change showed in accordance with the reduced thickness, which means an increase of sensitivity. However, considering the viewpoint of the signal linearity, it was selected for the optimum thickness of the diaphragm to 0.50 mm. The designed sensor element based on simulated results was tested to measure the output characteristics. Comparing of simulated and measured results, there was a margin of error of approximately 2%.

Fabrication of the Optical Fiber-Photodiode Array Module Using Si v-groove (실리콘 v-groove를 이용한 광섬유-광검출기 어레이 모듈 제작)

  • 정종민;지윤규;박찬용;유지범;박경현;김홍만
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.6
    • /
    • pp.88-97
    • /
    • 1994
  • We describe the design, fabrication, and performance of the optical fiber-photodiode 1$\times$12 arry module using mesa-type InS10.53T GaS10.47TAS/INP 1$\times$12 PIN photodiode array. We fabricated the PIN PD array for high-speed optical fiber parallel data link optimizing quantum efficiency, operating speed sensitivity from the PIN-FET structure, and electrical AC crosstalk. For each element of the array, the diameter of the photodetective area is 80 $\mu$m, the diameter of the p-metal pad is 90 $\mu$m, and the photodiode seperation is 250 $\mu$m to use Si v-groove. Ground conductor line is placed around diodes and p-metal pads are formed in zigzag to reduce Ac capacitance coupling between array elements. The dark current (IS1dT) is I nA and the capacitance(CS1pDT) is 0.9 pF at -5 V. No signifcant variations of IS1dT and CPD from element to element in the array were observed. We calulated the coupling efficiency for 10/125 SMF and 50/125 GI MMF, and measured the responsivity of the PD array at the wavelength is 1.55 $\mu$ m. Responsivities are 0.93 A/W for SMF and 0.96 A/W for MMF. The optical fiber-PD array module is useful in numerous high speed digital and analog photonic system applications.

  • PDF

Experimental Characterization-Based Signal Integrity Verification of Sub-Micron VLSI Interconnects

  • Eo, Yung-Seon;Park, Young-Jun;Kim, Yong-Ju;Jeong, Ju-Young;Kwon, Oh-Kyong
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.5
    • /
    • pp.17-26
    • /
    • 1997
  • Interconnect characterization on a wafer level was performed. Test patterns for single, two-coupled, and triple-coupled lines ere designed by using 0.5$\mu\textrm{m}$ CMOS process. Then interconnect capacitances and resistances were experimentally extracted by using tow port network measurements, Particularly to eliminate parasitic effects, the Y-parameter de-embedding was performed with specially designed de-embedding patterns. Also, for the purpose of comparisons, capacitance matrices were calculated by using the existing CAD model and field-solver-based commercial simulator, METAL and MEDICI. This work experimentally verifies that existing CAD models or parameter extraction may have large deviation from real values. The signal transient simulation with the experimental data and other methodologies such as field-solver-based simulation and existing model was performed. as expected, the significantly affect on the signal delay and crosstalk. The signal delay due to interconnects dominates the sub-micron-based a gate delay (e.g., inverter). Particularly, coupling capacitance deviation is so large (about more than 45% in the worst case) that signal integrity cannot e guaranteed with the existing methodologies. The characterization methodologies of this paper can be very usefully employed for the signal integrity verification or he electrical design rule establishments of IC interconnects in the industry.

  • PDF

Extraction Method of Parameter of Self Excited Eddy Current Brake Using L-C Resonance and characteristic research (L-C 공진형 자여자 와전류 브레이크의 파라미터 추출 방법 및 특성연구)

  • Jeong, Taechul;Cho, Sooyoung;Ahn, Hanwoong;Jeong, Geochul;Park, Eung-Seok;Cho, Hyuntae;Lee, Ju
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.11
    • /
    • pp.82-88
    • /
    • 2015
  • In recent years, numerous studies have attempted to find and explore the auxiliary brake and the oil pressure type and electrical type are mainly used. However, the model proposed here is to self-excited eddy current brake. The advantage of this is it does not require an external power supply and can be produced to reduce the size than others. This self-eddy current brake consists of RLC circuit so resistance, inductance and capacitance value can be considered a fixed value. But, inductance and resistance value changes depending on the shape, temperature and magnetic alteration. Therefore, in this paper, the focal point is characteristic analysis according to the parameter variations. Also, using this result, this paper explains how to estimate the capacitance.

Dielectric Loss Tangent Measurement Using the $Al_{2}O_{3}$ Crystal Capacitor ($Al_{2}O_{3}$ Crystal Capacitor를 이용한 유전손실 측정)

  • Kim, Kwang-Soo;Her, In-Sung;Lee, Chong-Chan;Park, Dea-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.109-122
    • /
    • 2002
  • The standard capacitor must have not only precise value of the capacitance but also the basic properties of low dielectric loss tangent. In the reforming process of capacitors, the dielectric loss tangent must be also reformed. In this paper, the development of standard capacitors of 10 and 100pF for the dielectric loss tangent standard using $Al_{2}O_{3}$ Crystal and the measurement of dielectric loss tangent are discussed. The dielectric loss tangent depends upon the surface between electrode and dielectric in capacitor. With using the Electric Field Simulator, precise design values of electrode are simulated. For the purpose of measuring capacitance effect just in the dielectric, 3-Terminal and 4-Terminal Pair configuration are applied respectively at the electrode and the connector for the measuring equipment. As stated above method, the standard capacitors of 10 and l00pF for the establishment of the dielectric loss tangent standard using the $Al_{2}O_{3}$ Crystal are made with low dielectric loss tangent less than 10-4.

  • PDF

Statistical Analysis for Electrical Characteristics of $HfO_2$ Thin Films ($HfO_2$ 박막의 전기적 특성에 대한 통계적 분석)

  • Lee, Jung-Hwan;Kweon, Kyoung-Eun;Ko, Young-Don;Moon, Tae-Hyoung;Myoung, Jae-Min;Yun, Il-Gu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.223-224
    • /
    • 2005
  • In this paper, multiple regression analysis of the electrical characteristics for $HfO_2$ thin films grown by metal organic molecular beam epitaxy (MOMBE) was investigated. The electrical properties, such as, the accumulation capacitance and the hysteresis index, are the main factors to determine the characteristics of $HfO_2$ thin films. The input factors on the process are the substrate temperature, Ar gas flow, and $O_2$ gas flow. For statistical analysis, the design of experiments was carried out and the effect plots were used to analyze the manufacturing process. This methodology can predict the electrical characteristics of the thin film growth mechanism related to the process conditions.

  • PDF

A novel low-profile flow sensor for monitoring of hemodynamics in cerebral aneurysm

  • Chen, Yanfei;Jankowitz, Brian T.;Cho, Sung Kwon;Yeo, Woon-Hong;Chun, Youngjae
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.2
    • /
    • pp.71-84
    • /
    • 2015
  • A low-profile flow sensor has been designed, fabricated, and characterized to demonstrate the feasibility for monitoring hemodynamics in cerebral aneurysm. The prototype device is composed of three micro-membranes ($500-{\mu}m$-thick polyurethane film with $6-{\mu}m$-thick layers of nitinol above and below). A novel super-hydrophilic surface treatment offers excellent hemocompatibility for the thin nitinol electrode. A computational study of the deformable mechanics optimizes the design of the flow sensor and the analysis of computational fluid dynamics estimates the flow and pressure profiles within the simulated aneurysm sac. Experimental studies demonstrate the feasibility of the device to monitor intra-aneurysmal hemodynamics in a blood vessel. The mechanical compression test shows the linear relationship between the applied force and the measured capacitance change. Analytical calculation of the resonant frequency shift due to the compression force agrees well with the experimental results. The results have the potential to address important unmet needs in wireless monitoring of intra-aneurysm hemodynamic quiescence.

Electronically tunable compact inductance simulator with experimental verification

  • Kapil Bhardwaj;Mayank Srivastava;Anand Kumar;Ramendra Singh;Worapong Tangsrirat
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.550-563
    • /
    • 2024
  • A novel inductance simulation circuit employing only two dual-output voltage-differencing buffered amplifiers (DO-VDBAs) and a single capacitance (grounded) is proposed in this paper. The reported configuration is a purely resistor-less realization that provides electronically controllable realized inductance through biasing quantities of DO-VDBAs and does not rely on any constraints related to matched values of parameters. This structure exhibits excellent behavior under the influence of tracking errors in DO-VDBAs and does not exhibit instability at high frequencies. The simple and compact metal-oxide semiconductor (MOS) implementation of the DO-VDBAs (eight MOS per DO-VDBA) and adoption of grounded capacitance make the proposed circuit suitable for on-chip realization from the perspective of chip area consumption. The function of the pure grounded inductance is validated through high pass/bandpass filtering applications. To test the proposed design, simulations were performed in the PSPICE environment. Experimental validation was also conducted using the integrated circuit CA3080 and operational amplifier LF-356.