• Title/Summary/Keyword: Cantilever length and location

Search Result 18, Processing Time 0.033 seconds

A THREE DIMENSIONAL FINITE ELEMENT STRESS ANALYSIS OF OSSEOINTEGRATED PROSTHESIS ACCORDING TO THE LOCATION AND LENGTH OF CANTILEVER (골유착성 임플랜트 보철물의 캔틸레버 위치와 길이변화에 따른 삼차원 유한요소법적 응력분석)

  • Jang, Bok-Sook;Kim, Chang-Whe;Kim, Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.3
    • /
    • pp.501-532
    • /
    • 1996
  • This study investigated the effects of cantilever length, location and load condition on stress distribution developed in the implants, prostheses and supporting tissues. The osseointegrated prostheses with two 10mm Branemark implants at 2nd premolar and 1st molar sites with cantilever extensions at 1st premolar, 2nd and 3rd molar sites were constructed. Under 100N, 200N of vertical and $45^{\circ}$ oblique loads at the cantilever pontics, stress distribution patterns and displacement were analyzed with three dimensional finite element method. The results were as follows : 1. The stress was concentrated at the joint of the cantilever pontic and implant superstructure, the neck of implant and the ridge crest near the cantilever But there was little load transfer to the lower supporting tissues of implants. 2. The implant near the cantilever was displaced inferiorly while the implant far from the cantilever was displaced superiorly. In horizontal direction the implants were displaced to the direction where the loads were applied, except the apexes of the implants. 3. In case of anterior cantilever, the stress and displacement were higher than the prosthesis connected with natural tooth. 4. The stress developed in the posterior cantilevered type was higher than in the anterior cantilevered type. The greastest stress was concentrated at the ridge crest near the posterior cantilever. 5. The longer the cantilever, the more the stress was developed and was concentrated at the joint of the cantilever pontic and implant superstructure. 6. Under oblique load, the stress was concentrated at the necks of implants and the ridge crests, but decreased at the joint of the cantilever pontic and implant superstructure than under vertical load.

  • PDF

Active control of vibration of cantilever beams using PZT actuators (PZT actuator를 이용한 외팔보의 능동진동제어)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.247-252
    • /
    • 2008
  • This paper presents an active vibration control of cantilever beams under disturbances by a primary force. A direct velocity feedback control using a pair of PZT actuator and a velocity sensor is considered. Variation of the stability and performance with the locations of the sensor/actuator pair is investigated. It is found that the maximum gain varies with the locations of the sensor/actuator pair significantly. The maximum gain shows a symmetric distribution along the beam length with respect to the center point, although the boundary condition of the beam is unsymmetric. The control performance is affected by the location of the primary force as well as the location of the sensor/actuator pair. The active control system can more effectively reduce the vibration when the primary force is located close to the fixed boundary.

  • PDF

Active Vibration Control of Cantilever Beams Using PZT Actuators (PZT Actuator를 이용한 외팔보의 능동진동제어)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1293-1300
    • /
    • 2008
  • This paper presents an active vibration control of cantilever beams under disturbances by a primary force. A direct velocity feedback control using a pair of PZT actuator and a velocity sensor is considered. Variation of the stability and performance with the locations of the sensor/actuator pair is investigated. It is found that the maximum gain varies with the locations of the sensor/actuator pair significantly. The maximum gain shows a symmetric distribution along the beam length with respect to the center point, although the boundary condition of the beam is unsymmetric. The control performance is affected by the location of the primary force as well as the location of the sensor/actuator pair. The active control system can more effectively reduce the vibration when the primary force is located close to the fixed boundary.

A Study on the Stability of Cantilever Retaining Wall with a Short Heel (뒷굽이 짧은 캔틸레버 옹벽의 안정성에 관한 연구)

  • Yoo, Kun-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.10
    • /
    • pp.17-28
    • /
    • 2018
  • Important parameters for the stability checks of cantilever wall are the active earth pressure and the weight of soil above the heel of the base slab. If the heel length is so long enough that the shear zone bounded by the failure plane is not obstructed by the stem of the wall, the Rankine active condition is assumed to exist along the vertical plane which is located at the edge of the heel of the base slab. Then the Rankine active earth pressure equations may be theoretically used to calculate the lateral pressure on the vertical plane. However, in case of the cantilever wall with a short heel, the application of Rankine theory is not only theoretically incorrect but also makes the lateral earth pressure larger than the actual pressure and results in uneconomical design. In this study, for the cantilever wall with a short heel the limit analysis method is used to investigate the mechanism of development of the active earth pressure and then the magnitude and location of the resultants of the pressure and the weight of the soil above the heel are determined. The calculated results are compared with the existing methods for the stability check. In case of the cantilever wall with a short heel, the results by the Mohr circle method and Teng's method show max. 3.7% and 32% larger than those of the limit analysis method respectively.

Nonlinear dynamic responses of cracked atomic force microscopes

  • Alimoradzadeh, M.;Akbas, S.D.
    • Structural Engineering and Mechanics
    • /
    • v.82 no.6
    • /
    • pp.747-756
    • /
    • 2022
  • This study presents the nonlinear free and forced vibrations of a cracked atomic force microscopy (AFM) cantilever by using the modified couple stress. The cracked section of the AFM cantilever is considered and modeled as rotational spring. In the frame work of Euler-Bernoulli beam theory, Von-Karman type of geometric nonlinear equation and the modified couple stress theory, the nonlinear equation of motion for the cracked AFM is derived by Hamilton's principle and then discretized by using the Galerkin's method. The semi-inverse method is utilized for analysis nonlinear free oscillation of the system. Then the method of multiple scale is employed to investigate primary resonance of the system. Some numerical examples are presented to illustrate the effects of some parameters such as depth of the crack, length scale parameter, Tip-Mass, the magnitude and the location of the external excitation force on the nonlinear free and forced vibration behavior of the system.

Non-linear longitudinal fracture in a functionally graded beam

  • Rizov, Victor I.
    • Coupled systems mechanics
    • /
    • v.7 no.4
    • /
    • pp.441-453
    • /
    • 2018
  • Longitudinal fracture in a functionally graded beam configuration was studied analytically with taking into account the non-linear behavior of the material. A cantilever beam with two longitudinal cracks located symmetrically with respect to the centroid was analyzed. The material was functionally graded along the beam width as well as along the beam length. The fracture was studied in terms of the strain energy release rate. The influence of material gradient, crack location along the beam width, crack length and material non-linearity on the fracture behavior was investigated. It was shown that the analytical solution derived is very useful for parametric analyses of the non-linear longitudinal fracture behavior. It was found that by using appropriate material gradients in width and length directions of the beam, the strain energy release rate can be reduced significantly. Thus, the results obtained in the present paper may be applied for optimization of functionally graded beam structure with respect to the longitudinal fracture performance.

Clinical outcomes of implant supported fixed-hybrid prostheses in the fully edentulous arches (완전무치악 환자에서 고정성 임플란트 하이브리드 수복물의 임상성적)

  • Huh, Yoon-Hyuk;Yi, Yang-Jin;Kwon, Min-Jung;Kim, Young-Kyun;Cha, Min-Sang
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.3
    • /
    • pp.183-189
    • /
    • 2013
  • Purpose: The aim of this study was to evaluate clinical outcomes of implant supported fixed-hybrid prostheses (FHP) in the fully edentulous arches. Materials and methods: Patients in this retrospective study were restored with fixed-hybrid prostheses supported by 4 to 6 implants and functioned more than 1 year of loading. Outcome measures were marginal bone change of implant related with sex, anatomical location (maxilla vs. mandible), opposing teeth, loading time of patients, tilting of posterior implant by Mann- Whitney U test and cantilever length of superstructure by regression analysis, and complication rates. Significance level was set P<.05. Results: A total number of 84 implants (16 restorations) placed in 16 patients were observed for 28 months and mean marginal bone loss was $0.53{\pm}0.39mm$. There were no differences of marginal bone loss according to sex, anatomical location (maxilla vs. mandible), opposing teeth, loading time of patients (P>.05), and cantilever length was not significantly related with a marginal bone loss of implant next to cantilever (P>.05). Complication was shown in 11 patients and veneer fracture and dislodging of artificial teeth were most prevalent. Conclusion: Within the limitations of this study, although marginal bone loss of FHP was very little, complication rates were high. Irrespective of tilting of most posterior implants, marginal bone loss of most posterior implants next to cantilever was less than those of the other implants positioned anteriorly. Cantilever length (<17 mm) did not affect a marginal bone loss of most posterior implants.

A Study on the fault diagnosis of a cantilever beam using the Bispectrum (바이스펙트럼을 이용한 외팔보의 결함 진단에 관한 연구)

  • Ahn, Young-Chan;Lee, Hae-Jin;Kang, Won-Ho;Lee, Jung-Yoon;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.591-596
    • /
    • 2006
  • This study is base on the fault detection and diagnosis when a crack is happened a structure. A crack in a structure will affect the modal parameters. We are searched a percentage of changes in the natural frequencies according to changes of location and propagation of the crack using the Rayleigh's energy method. This method is presented to identify the presence of a crack and its location. The study is carried out both theoretically and experimentally and the results are presented in this paper. The location of the crack is also moved from the fixed end to the free end along its length. The changes in natural frequencies are observed from theoretically study, due to the presence of the crack at different locations and depths, and the percentage change in frequency values are calculated. These results are confirmed by the experiments. And then, a difference between a cracked beam and uncracked beam observed using the bispectrum as high-order spectrum.

  • PDF

A Development of Detail Design Software for Conventional Catenary System (기존선 전차선로 상세설계 소프트웨어 개발)

  • Lee, Ki-Won;Kwon, Sam-Young;Cho, YongHyeon;Lee, Tae-Kwon;Lee, Kyung-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.481-488
    • /
    • 2008
  • A detail design of overhead catenary system can be divided into a pegging plan and a design of MD(mounting diagram). In the pegging plan, the mast location, staggering and tension length are determined in the longitudinal point of view according to track condition, location of substation and etc. In the MD, a transversal diagram including masts, all of wires, cantilever, foundation and etc. and materials used are shown. This study presents a development of a software to design the MD for a conventional catenary system automatically. In the program, thin walled steel pole, foundation, cantilever, all of wires and etc. are automatically drawn according to the input and catenary conditions. And materials used in the MD and the section can be also managed respectively in the program. This application of the program is developed using C# for input/calculating and using C++(ObjectARX) for drafting the MD, respectively.

  • PDF

A STUDY ON THE OSSEOINTEGRATED PROSTESIS USING THREE DIMENSIONAL FINITE ELEMENT METHOD (골유착성 보철물에 관한 삼차원 유한요소분석적 연구)

  • Kim, Dong-Won;Kim, Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.1
    • /
    • pp.167-213
    • /
    • 1991
  • The successful replacement of missing teeth has been one driving aim behind the emergence of implant dentistry as both a technology and clinical vocation for over four decades. To date, a multitude of dental implant devices had been designed and utilized in the patient population. Most of these devices have been designed without support of the engineering criteria. The long-term success of any dental implant is dependent upon the optimization of stresses which occurs during oral function and parafunction. Although many studies have examined the biologic interactions between dental implants and living tissue, few studies have been reported on the biomechanical aspects of dental implants. The purpose of this study was to analyze the stress distribution of osseointegrated prosthesis on certain conditions, such as amount of load, location of load, length of fixtures, number of fixtures used, arch shape, bone quality, etc. Three dimentional finite element analysis was used for this study. FEM models were created using commercial software(Super SAP. for IBM 16 bit AT computer. All elements were 8-node brick, isoparametric. Mandible and prosthesis was modeled with 780 elements and 1074 nodes. The results were as follows : 1. In case of cantilever extension, there was a compressive stress at the base of the first implant and a tensile stress at the base of the second implant. 2. The stresses were linearly proportional to the amount of load. 3. The stresses were linearly proportional to the length of cantilever. 4. There was a stress concentration at the neck of the implant and bone under horizontal loads.

  • PDF