• Title/Summary/Keyword: Cantilever beam

Search Result 834, Processing Time 0.044 seconds

Stability Analysis of Cracked Cantilever Beam Subjected to Follower Force (종동력을 받는 크랙 외팔 보의 안정성 해석)

  • Ahn, Sung-Jin;Yoon, Han-Ik;Son, In-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.215-218
    • /
    • 2007
  • In this paper a dynamic behavior(natural frequency) of a cracked cantilever beam subjected to follower force is presented. In addition, an analysis of the flutter and buckling instability of a cracked cantilever beam subjected to a follower compressive load is presented. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The vibration analysis on such cracked beam is conducted to identify the critical follower force for flutter insstability based on the variation of the first two resonant frequencies of the beam. Besides, the effect of the crack's intensity and location on the flutter follower force is studied. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations.

  • PDF

Stability Analysis of Cracked Cantilever Beam With Tip Mass and Follower Force (끝단질량과 종동력을 가진 크랙 외팔 보의 안정성 해석)

  • Yoon, Han-Ik;Son, In-Soo;Ahn, Tae-Su
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.99-104
    • /
    • 2007
  • In this paper a dynamic behavior(natural frequency) of a cracked cantilever beam with tip mass and follower force is presented. In addition. an analysis of the flutter and buckling instability of a cracked cantilever beam subjected to a follower compressive load is presented. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The vibration analysis on such cracked beam is conducted to identify the critical follower force for flutter ins stability based on the variation of the first two resonant frequencies of the beam. Besides. the effect of the crack's intensity and location on the flutter follower force is studied. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations.

  • PDF

Vibration Analysis of a Rotating Cantilever Beam with Tip Mass Using DTM (끝단 집중 질량을 갖는 회전 외팔보의 DTM을 이용한 진동 해석)

  • Kim, Min-Ju;Kang, Nam-Cheol
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.11
    • /
    • pp.1058-1063
    • /
    • 2010
  • The vibration analysis of a rotating cantilever beam with tip mass was studied by using DTM(differential transformation method). DTM is one of the numerical methods, for finding series solutions by transforming differential equations to algebraic ones similar with Laplace transform. The advantages of the DTM are that it is easy to understand and is effective in finding numerical solutions. Applying DTM, the natural frequencies of a rotating cantilever beam were obtained taking into consideration the effects of tip mass. Also, convergence study of DTM was performed to decide the number of terms used in eigenvalue problems. Numerical results obtained by DTM show good agreement with those by other methods. As a result, it is expected that DTM can be a useful method in vibration analysis such as that of a rotating cantilever beam with tip mass.

Study on the Influence of Applied Forces Acting on Small Scale Cantilever Beams (미소 외팔보의 동적해석 시 작용하는 힘들의 영향도에 관한 연구)

  • Kim, Kwan-Yong;Yoo, Hong-hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.702-707
    • /
    • 2005
  • The equations of motion of the structure, which is a small scale cantilever beam considering electrostatic force, squeeze film damping and van der Waals force are obtained employing Galerkin's method based on Euler beam theory. The influence of each force is investigated fur changing the size of a small scale cantilever beam which assumed uniform shape. Also the forces which are affected by the required size of a small scale cantilever beam for manufacturing are forecasted.

  • PDF

Analysis of Bridging Stress Effect of Polycrystalline Aluminas Using Double Cantilever Beam Method II. Development of Double Cantilever Beam Method Considering Bridging Effect (Double Cantilever Beam 방법을 이용한 다결정 알루미나의 Bridging 응력효과 해서 II. Bridging 효과를 고려한 Double cantilever Beam 분석방법의 정립)

  • 손기선;이성학;백성기
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.5
    • /
    • pp.590-601
    • /
    • 1996
  • This study aims at developing the double cantilever beam (DCB) method in order to calculate the bridging stress distribution in polycrystalline aluminas with different grain sizes. In the already existing DCB methods the measured crack opening displacement (COD) in coarse-grained aluminas deviates generally from the calcula-ted one because of the grain-interface bridging in the crack wake. In the current DBC method developed in the present study the effect of the bridging stress was considered in the DCB analysis. whereas the only effect of applied point-loading at the end of DCB specimen was taken into account in the existing DCB analysis The crack closure due to bridging stress was calculated using the power-law relation and the theoretical model developed in Part I of the present paper as bridging stress function and then compared analytically. The limitations of the current DCB methods such as specimen dimensions applied loads and elastic modulus were discussed in detail to provide a reliability of the newly developed DCB analysis for the bridging stress distribu-tion in polycrystalline aluminas.

  • PDF

Vibration Analysis of Cantilever Beams Having a Concentrated Tip Mass and a Crack (끝단 집중질량과 크랙을 가진 외팔보의 진동 해석)

  • Kim, Kyung-Ho;Eom, Seung-Man;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1360-1365
    • /
    • 2006
  • In this paper the vibration analysis of cantilever beams having a concentrated tip mass and an open crack are performed. The influences of a concentrated tip mass, the crack depth, and the crack position on the natural frequencies of the cracked cantilever beam are investigated by a numerical method. The cracked cantilever beam is modeled based on the Euler-Bernoulli beam theory. The flexibility due to crack is calculated using a fracture mechanics theory. The crack is assumed to be opened during the vibrations. The results obtained by the present method were compared with experimental results to verify the theory. As inspected, as the crack depth and the concentrated tip mass increase, the natural frequencies of the beam decrease. In general, the natural frequencies of the cantilever beam are more sensitive to the depth of the crack than the position of the crack.

  • PDF

Analysis of a cantilever bouncing against a stop according to Timoshenko beam theory

  • Tsai, Hsiang-Chuan;Wu, Ming-Kuen
    • Structural Engineering and Mechanics
    • /
    • v.5 no.3
    • /
    • pp.297-306
    • /
    • 1997
  • The bouncing of a cantilever with the free end pressed against a stop can create high-frequency vibration that the Bernoulli-Euler beam theory is inadequate to solve. An analytic procedure is presented using Timoshenko beam theory to obtain the non-linear response of a cantilever supported by an elastic stop with clearance at the free end. Through a numerical example, the bouncing behavior of the Timoshenko and Bernoulli-Euler beam models are compared and discussed.

Cantilever beam vibration sensor based on the axial property of fiber Bragg grating

  • Casas-Ramos, Miguel A.;Sandoval-Romero, G.E.
    • Smart Structures and Systems
    • /
    • v.19 no.6
    • /
    • pp.625-631
    • /
    • 2017
  • In the fields of civil engineering and seismology, it is essential to detect and tracking the vibrations, and the fiber Bragg gratings (FBGs) are typically used as sensors to measure vibrations. Where, one of the most popular and detailed approaches to use FBGs as vibration sensors involves the use of cantilever beam designs, which adds a mass to measure low and moderate frequencies (from 20 Hz up to 1 kHz) with high sensitivities (greater than 10 pm/g). The design consists of a bending strain in the cantilever that is simultaneously transferred to the FBG, resulting in a shift in the wavelength that is proportional to the strain experienced by the cantilever. In this work, we present the experimental results of a vibration sensor design using a cantilever beam to generate an axial uniform strain in the FBG in-line with the vertical axis, which modifies the cantilever's natural frequency that allows the sensor to have a wide frequency broadband without losing sensitivity. This sensor achieved a sensitivity of about 339 pm/g and a natural frequency of 227.3 Hz. The presented design compared with the traditional cantilever beam-based FBG vibration sensors, has the advantages of a simple design for detection on vibration-sensitive structures and its physical parameters can be easily modified in order to satisfy the requirements of the desired vibration measurements.

Phase Change for One to One Resonance of Nonlinear Cantilever Beam (비선형 외팔보의 일대일 공진에서의 위상변화)

  • Kim, Myoung-Gu;Pak, Chul-Hui;Cho, Chong-Du;Cho, Ho-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.703-708
    • /
    • 2006
  • The cantilever beam with nonlinearity has many dynamic characteristics of nonlinear vibration. Nonlinear terms of a flexible cantilever beam include inertia, spring, damping, and warping. When the beam is given basic harmonic excitation, it shows planar and nonplanar vibrations due to one-to-one resonance. And when the one-to-one resonance occurs, the flexible beam shows different behaviors in those vibrations. For the one-to-one resonance occurring in each mode, the phase value of the planar vibration is different from that of the nonlinear vibration. This paper investigates the phase change and the phase difference between such planar and nonplanar vibrations which are caused by one-to-one resonance.

  • PDF

Phase Change for One to One Resonance of Nonlinear Cantilever Beam (비선형 외팔보의 일대일 공진에서의 위상변화)

  • Pak, Chul-Hui;Cho, Chong-Du;Cho, Ki-Cheol;Kim, Myoung-Gu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.48-54
    • /
    • 2007
  • The cantilever beam with nonlinearity has many dynamic characteristics of nonlinear vibration. Nonlinear terms of a flexible cantilever beam include inertia, spring, damping, and warping. When the beam is given basic harmonic excitation, it shows planar and nonplanar vibrations due to one-to-one resonance. And when the one-to-one resonance occurs, the flexible beam shows different behaviors in those vibrations. For the one-to-one resonance occurring in each mode, the phase value of the planar vibration is different from that of the nonlinear vibration. This paper investigates the phase change and the phase difference between such planar and nonplanar vibrations which are caused by one-to-one resonance.