Diurnal variations of air temperature and relative humidity in the Urban Canopy Layer (UCL) of the Seoul metropolitan area are examined using the Weather Research and Forecasting model coupled with the Seoul National University Urban Canopy Model. The canopy layer air temperature is higher than 2-m air temperature and exhibits a more rapid rise and an earlier peak in the daytime. These result from the multiple reflections of shortwave radiation and longwave radiation trapping due to the urban geometry. Because of the absence of vegetation in the UCL and the higher canopy layer air temperature, the canopy layer relative humidity is lower than 2-m relative humidity. Additional simulations with building height changes are conducted to examine the sensitivities of the canopy layer meteorological variables to the urban canyon aspect ratio. As the aspect ratio increases, net sensible heat flux entering the UCL increases (decreases) in the daytime (nighttime). However, the increase in the volume of the UCL reduces the magnitude of change rate of the canopy layer air temperature. As a result, the canopy layer air temperature generally decreases in the daytime and increases in the nighttime as the aspect ratio increases. The changes in the canopy layer relative humidity due to the aspect ratio change are largely determined by the canopy layer air temperature. As the aspect ratio increases, the canopy layer relative humidity is generally increased in the daytime and decreased in the nighttime, contrary to the canopy layer air temperature.
The Urban Canopy Model (UCM) implemented in WRF model is applied to improve urban meteorological forecast for fine-scale (about 1-km horizontal grid spacing) simulations over the city of Seoul. The results of the surface air temperature and wind speed predicted by WRF-UCM model is compared with those of the standard WRF model. The 2-m air temperature and wind speed of the standard WRF are found to be lower than observation, while the nocturnal urban canopy temperature from the WRF-UCM is superior to the surface air temperature from the standard WRF. Although urban canopy temperature (TC) is found to be lower at industrial sites, TC in high-intensity residential areas compares better with surface observation than 2-m temperature. 10-m wind speed is overestimated in urban area, while urban canopy wind (UC) is weaker than observation by the drag effect of the building. The coupled WRF-UCM represents the increase of urban heat from urban effects such as anthropogenic heat and buildings, etc. The study indicates that the WRF-UCM contributes for the improvement of urban weather forecast such nocturnal heat island, especially when an accurate urban information dataset is provided.
Journal of The Korean Society of Agricultural Engineers
/
v.62
no.5
/
pp.85-91
/
2020
In order to calculate the Crop Water Stress Index (CWSI), it is necessary to collect weather data (air temperature, humidity, wind speed and solar radiation) and canopy temperature. However, it is not always available to have necessary data sets for CWSI calculation. Therefore, this study was aimed to develop an easy and simple CWSI equation (CWSIEE) using only two data, air and canopy temperatures. Infrared sensors and weather sensors were installed on apple and peach trees and nearby a study area and every ten-minute data were collected from June to October in 2018 and 2019, respectively. A relationship between air-canopy temperature difference and CWSI was statistically analyzed and used to develop CWSIEE using the three dimensional Gaussian model. The performance of CWSIEE against original CWSI showed R2 and NSE to 0.780 and 0.710 for apple trees and R2 and NSE to 0.884 and 0.866 for peach trees. This study found that the level of crop water stress could be easily calculated using CWSIEE with only air and canopy temperature data.
Journal of the Korean Institute of Landscape Architecture
/
v.30
no.3
/
pp.25-34
/
2002
The purpose of this paper is to discuss the function of microclimate amelioration of urban trees regarding the environmental benefits of street trees in summer, focusing on the heat pollution-urban heat island, tropical climate day's phenomenon and air pollution. We measured the diurnal variation of air/ground temperatures and humidity within the vegetation canopy with the meteorological tower observation system. Summertime air temperatures within the vegetation canopy layer were 1-2$^{\circ}C$ cooler than in places with no vegetation. Due to lack of evaporation, the ground surface temperatures of footpaths were, at a midafternoon maximum, 8$^{\circ}C$ hotter than those under trees. This means that heat flows from a place with no vegetation to a vegetation canopy layer during the daytime. The heat is consumed as a evaporation latent heat. These results suggest that the extension of vegetation canopy bring about a more pleasant urban climate. Diurnal variation of air/ground temperatures and humidity within the vegetation canopy were measured with the meteorological tower observation system. According to the findings, summertime air temperatures under a vegetation canopy layer were 1-2$^{\circ}C$ cooler than places with no vegetation. Due mainly to lack of evaporation the ground surface temperature of footpaths were up to 8$^{\circ}C$ hotter than under trees during mid-afternoon. This means that heat flows from a place where there is no vegetation to another place where there is a vegetation canopy layer during the daytime. Through the energy redistribution analysis, we ascertain that the major part of solar radiation reaching the vegetation cover is consumed as a evaporation latent heat. This result suggests that the expansion of vegetation cover creates a more pleasant urban climate through the cooling effect in summer. Vegetation plays an important role because of its special properties with energy balance. Depended on their evapotranspiration, vegetation cover and water surfaces diminish the peaks of temperature during the day. The skill to make the best use of the vegetation effect in urban areas is a very important planning device to optimize urban climate. Numerical simulation study to examine the vegetation effects on urban climate will be published in our next research paper.
Through numerical experiment using simplified OSU-1D PBL(Oregon State University One-Dimensional Planetary Boundary Layer) model and field measurement, we studied the impacts of vegetation canopy on heat island that was one of the characteristics of local climaate in urban area. it was found that if the fraction of vegetation was extended by 10 percent, the maximum air temperature and the maximum ground temperature can come down about 0.9${\circ}C$, 2.3${\circ}C$, respectively. Even though the field measurement was done under a little unstable atmospheric condition, the canopy air temperature was lower in the daytime, and higher at night than the air and ground temperature. This result suggests that the extention of vegetation canopy can bring about more pleasant local climate by causing the oasis, the shade and the blanket effect.
Journal of the Korean Society of Environmental Restoration Technology
/
v.12
no.1
/
pp.44-51
/
2009
In order to determine air temperature difference by canopy layer in the forest, air temperatures were observed at Seolleung Park, Gahngnam-ku, Seoul. from November 9, 2007 to November 8, 2008 by 10 minute interval. The data were analyzed in terms of diurnal variation based on annual and monthly temperature difference. Using calm, less cloudy and no rainy weather data, average air temperature difference between forest and grass was observed as $0.8^{\circ}C$. The maximum air temperature difference was observed at 22:10, 23:20, 23:30 and 23:40 by $2.13^{\circ}C$ and the minimum one observed at 13:00 by $-0.84^{\circ}C$ in diurnal variation. The maximum temperature difference occurred at 19 : 50 on September by $3.67^{\circ}C$, Overall the air temperature in the forest was higher than that of grass at night and lower in midday.
Korean Journal of Agricultural and Forest Meteorology
/
v.2
no.4
/
pp.204-208
/
2000
Little information is available for the temporal variation in air temperature profile within rice canopies under development, while much works have been done for a fully developed canopy. Fine wire thermocouples of 0.003 mm diameter (chromel-constantan) were installed at 10 vertical heights by a 10 cm step in a paddy rice field to monitor the air temperatures over and within the developing rice canopy from one month after transplanting (June 29) to just before heading (August 24). According to a preliminary analysis of the data, we found neither the daytime temperature maximum nor the night time minimum at the active radiation surface (the canopy height with maximum leafages) during this period, which is a typical profile of a fully developed canopy. Air temperature within the canopy never exceeded that above the canopy at 1.5 m height during the daytime. Temporal march of the within-canopy profile seemed to be controlled mainly by the ambient temperature above the canopy and the water temperature beneath the canopy, and to some extent by the solar altitude, resulting in alternating isothermal and inversion structures.
Sky view factor can quantify the influence of complex obstructions. This study aims to evaluate the best available SVF method that represents an urban thermal condition with land cover in complex city of Korea and also to quantify a correlation between SVF and mean air temperature; the results are as follows. First, three SVF methods comparison result shows that urban thermal study should consider forest canopy induced effects because the forest canopy test (on/off) on SVF reveals significant difference range (0.8, between maximum value and minimum value) in comparison with the range (0.1~0.3) of SVFs (Fisheye, SOLWEIG and 3DPC) difference. The significance is bigger as a forest cover proportion become larger. Second, R-square between SVF methods and urban local mean air temperature seems more reliable at night than a day. And as the value of SVF increased, it showed a positive slope in summer day and a negative slope in winter night. In the SVF calculation method, Fisheye SVF, which is the observed value, is close to the 3DPC SVF, but the grid-based SWG SVF is higher in correlation with the temperature. However, both urban climate monitoring and model/analysis study need more development because of the different between SVF and mean air temperature correlation results in the summer night period, which imply other major factors such as cooling air by the forest canopy, warming air by anthropogenic heat emitted from fuel oil combustion and so forth.
Korean Journal of Agricultural and Forest Meteorology
/
v.3
no.4
/
pp.199-205
/
2001
This study was conducted to figure out temperature profiles of a partially developed paddy rice canopy, which are necessary to run plant disease forecasting models. Air temperature over and within the developing rice canopy was monitored from one month after transplanting (June 29) to just before heading (August 24) in 1999 and 2001. During the study period, the temporal march of the within-canopy profile was analyzed and an empirical formula was developed for simulating the profile. A partially developed rice canopy temperature seemed to be controlled mainly by the ambient temperature above the canopy and the water temperature beneath the canopy, and to some extent by the solar altitude, resulting in alternating isothermal and inversion structures. On sunny days, air temperature at the height of maximum leafages was increased at the same rate as the ambient temperature above the canopy after sunrise. Below the height, the temperature increase was delayed until the solar noon. Air temperature near the water surface varied much less than those of the outer- and the upper-canopy, which kept increasing by the time of daily maximum temperature observed at the nearby synoptic station. After sunset, cooling rate is much less at the lower canopy, resulting in an isothermal profile at around the midnight. A fairly consistent drop in temperature at rice paddies compared with the nearby synoptic weather stations across geographic areas and time of day was found. According to this result, a cooling by 0.6 to 1.2$^{\circ}C$ is expected over paddy rice fields compared with the officially reported temperature during the summer months. An empirical equation for simulating the temperature profile was formulated from the field observations. Given the temperature estimates at 150 cm above the canopy and the maximum deviation at the lowest layer, air temperature at any height within the canopy can be predicted by this equation. As an application, temperature surfaces at several heights within rice fields were produced over the southwestern plains in Korea at a 1 km by 1km grid spacing, where rice paddies were identified by a satellite image analysis. The outer canopy temperature was prepared by a lapse rate corrected spatial interpolation of the synoptic temperature observations combined with the hourly cooling rate over the rice paddies.
This experiment was carried out to evaluate the microclimate of wheat canopy, growth and yield characteristics of wheat under north-south and east-west row orientation. The variety used in this experiment was "AG South 2000", which was developed in USA. Solar radiation, air temperature, relative humidity, and soil temperature were monitored by data logger from March to May in 2002, The ratio of light penetration to the bottom from the upper canopy was 36.8% in north-south and 21.4% in east-west row orientation. Temporal march of light penetration to the bottom from March to May decreased as wheat developed canopy structure and decreased a little from May as plant were matured. The highest light penetration to the bottom from upper canopy occurred at 13:00 in both north-south and east-west row orientations, respectively which were 36 times in north-south and 27 times in east-west row orientation, respectively. Daily maximum temperature at the bottom of canopy occurred at 14:00 with 29 times in north-south, while 19 times were obtained at 14:00 and 15:00, respectively in east-west row orientation. Relative humidity at the bottom of the canopy in east-west yow orientation showed higher than that of north-south row orientation. Occurrence of daily maximum soil temperature of north-south showed one hour later compared with east-west yow orientation. 1000 grain weight and test weight of north-south row orientation was higher than those of east-west vow orientation. Correlation coefficient between solar radiation of upper canopy and 1000 grain weight showed r=$0.8132^{*}$, and between air temperature of upper canopy and number of spikes per $\textrm{m}^{2}$ and 1000 grain weight showed significant positive correlation with r=$0.8139^{*}$, and r=$0.8293^{*}$, respectively.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.