Browse > Article
http://dx.doi.org/10.14191/Atmos.2017.27.4.483

A Study on a Comparison of Sky View Factors and a Correlation with Air Temperature in the City  

Yi, Chaeyeon (Weather Information Service Engine Institute, Hankuk University of Foreign Studies)
Shin, Yire (Weather Information Service Engine Institute, Hankuk University of Foreign Studies)
An, Seung Man (Korea Research Institute for Human Settlements)
Publication Information
Atmosphere / v.27, no.4, 2017 , pp. 483-498 More about this Journal
Abstract
Sky view factor can quantify the influence of complex obstructions. This study aims to evaluate the best available SVF method that represents an urban thermal condition with land cover in complex city of Korea and also to quantify a correlation between SVF and mean air temperature; the results are as follows. First, three SVF methods comparison result shows that urban thermal study should consider forest canopy induced effects because the forest canopy test (on/off) on SVF reveals significant difference range (0.8, between maximum value and minimum value) in comparison with the range (0.1~0.3) of SVFs (Fisheye, SOLWEIG and 3DPC) difference. The significance is bigger as a forest cover proportion become larger. Second, R-square between SVF methods and urban local mean air temperature seems more reliable at night than a day. And as the value of SVF increased, it showed a positive slope in summer day and a negative slope in winter night. In the SVF calculation method, Fisheye SVF, which is the observed value, is close to the 3DPC SVF, but the grid-based SWG SVF is higher in correlation with the temperature. However, both urban climate monitoring and model/analysis study need more development because of the different between SVF and mean air temperature correlation results in the summer night period, which imply other major factors such as cooling air by the forest canopy, warming air by anthropogenic heat emitted from fuel oil combustion and so forth.
Keywords
Sky view factor (SVF); fisheye-lens; SOLWEIG model; three-dimensional point cloud (3DPC) model; urban canopy parameter (UCP); pedestrian level; forest canopy;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Ali-Toudert, F., and H. Mayer, 2007: Effects of asymmetry, galleries, overhanging facades and vegetation on thermal comfort in urban street canyons. Sol. Energy, 81, 742-754.   DOI
2 An, S. M., B. S. Kim, H. Y. Lee, C. H. Kim, C. Y. Yi, J. H. Eum, and J. H. Woo, 2014: Three-dimensional point cloud based sky view factor analysis in complex urban settings. Int. J. Climatol., 34, 2685-2701, doi:10.1002/joc.3868.   DOI
3 An, S. M., H.-G. Son, K.-S. Lee, and C. Yi, 2016: A Study of the urban tree canopy mean radiant temperature mitigation estimation. J. Korean Inst. Landsc. Archit., 44, 93-106, doi:10.9715/KILA.2016.44.1.093 (in Korean with English abstract).   DOI
4 Anderson, M. C., 1964: Studies of the woodland light climate: I. The photographic computation of light conditions. J. Ecology, 52, 27-41.   DOI
5 Bruse, M., and H. Fleer, 1998: Simulating surface-plant-air interactions inside urban environments with a three dimensional numerical model. Environ. Model Softw., 13, 373-384.   DOI
6 Casares, F. J., J. Ramirez-Faz, and R. Lopez-Luque, 2014: Development of synthetic hemispheric projections suitable for assessing the sky view factor on horizontal planes. Energy Build., 82, 696-702, doi:10.1016/j.enbuild.2014.06.057.   DOI
7 Chapman, L., and J. E. Thornes, 2004: Real-time sky-view factor calculation and approximation. J. Atmos. Ocean. Technol., 21, 730-741.   DOI
8 Chen, L., E. Ng, X. An, C. Ren, M. Lee, U. Wang, and Z. He, 2012: Sky view factor analysis of street canyons and its implications for daytime intra-urban air temperature differentials in high-rise, high-density urban areas of Hong Kong: A GIS-based simulation approach. Int. J. Climatol., 32, 121-136, doi:10.1002/joc.2243.   DOI
9 Gal, T., F. Lindberg, and J. Unger, 2009: Computing continuous sky view factors using 3D urban raster and vector databases: Comparison and application to urban climate. Theor. Appl. Climatol., 95, 111-123.   DOI
10 Eum, J.-H., D. Scherer, U. Fehrenbach, J. Koppel, and J.-H. Woo, 2013: Integrating urban climate into urban master plans using spatially distributed information-The Seoul example. Land Use Policy, 34, 223-232, doi:10.1016/j.landusepol.2013.03.016.   DOI
11 Grimmond, C. S. B., S. K. Potter, H. N. Zutter, and C. Souch, 2001: Rapid methods to estimate sky-view factors applied to urban areas. Int. J. Climatol., 21, 903-913.   DOI
12 Hart, M. A., and D. J. Sailor, 2009: Quantifying the influence of land-use and surface characteristics on spatial variability in the urban heat island. Theor. Appl. Climatol., 95, 397-406.   DOI
13 Holmer, B., 1992: A simple operative method for determination of sky view factors in complex urban canyons from fisheye photographs. Meteorol. Zeitschrift, 1, 236-239.
14 Holmer, B., U. Postgard, and M. Eriksson, 2001: Sky view factors in forest canopies calculated with IDRISI. Theor. Appl. Climatol., 68, 33-40.   DOI
15 Hammerle, M., T. Gal, J. Unger, and A. Matzarakis, 2011: Comparison of models calculating the sky view factor used for urban climate investigations. Theor. Appl. Climatol., 105, 521-527, doi:10.1007/s00704-011-0402-3.   DOI
16 Janicke, B., F. Meier, F. Lindberg, S. Schubert, and D. Scherer, 2016: Towards city-wide, building-resolving analysis of mean radiant temperature. Urban Clim., 15, 83-98, doi:10.1016/j.uclim.2015.11.003.   DOI
17 Kastendeuch, P. P., 2013: A method to estimate sky view factors from digital elevation models. Int. J. Climatol., 33, 1574-1578, doi:10.1002/joc.3523.   DOI
18 Kong, F., W. Yan, G. Zheng, H. Yin, G. Cavan, W. Zhan, N. Zhang, and L. Cheng, 2016: Retrieval of threedimensional tree canopy and shade using terrestrial laser scanning (TLS) data to analyze the cooling effect of vegetation. Agric. Forest Meteor., 217, 22-34, doi:10.1016/j.agrformet.2015.11.005.   DOI
19 Kim, K. R., C. Yi, J.-S. Lee, F. Meier, B. Janicke, U. Fehrenbach, and D. Scherer, 2014: BioCAS: Biometeorological climate impact assessment system for buildingscale impact assessment of heat-stress related mortality. DIE ERDE, 145, 62-79, doi:10.12854/erde-145-6.   DOI
20 Kokalj, Z., K. Zaksek, and K. Ostir, 2011: Application of sky-view factor for the visualization of historic landscape features in lidar-derived relief models. Antiquity, 85, 263-273, doi:10.1017/S0003598X00067594.   DOI
21 Lindberg, F., B. Holmer, and S. Thorsson, 2008: SOLWEIG 1.0 - Modelling spatial variations of 3D radiant fluxes and mean radiant temperature in complex urban settings. Int. J. Biometeorol., 52, 697-713.   DOI
22 Lindberg, F., and C. S. B. Grimmond, 2011: The influence of vegetation and building morphology on shadow patterns and mean radiant temperatures in urban areas: Model development and evaluation. Theor. Appl. Climatol., 105, 311-323, doi:10.1007/s00704-010-0382-8.   DOI
23 Loridan, T., and C. S. B. Grimmond, 2012: Characterization of energy flux partitioning in urban environments:Links with surface seasonal properties. J. Appl. Meteor. Climatol., 51, 219-241, doi:10.1175/JAMC-D-11-038.1.   DOI
24 Oke, T. R., 1987: Boundary Layer Climates. 2nd. Methuen, 289 pp.
25 Matuschek, O., and A. Matzarakis, 2010: Estimation of sky view factor in complex environment as a tool for applied climatological studies. In Berichte des Meteorologischen Instituts der Albert-Ludwigs-Universitat Freiburg, Nr. 20, A. Matzarakis Eds., 534-539.
26 Matzarakis, A., and O. Matuschek, 2011: Sky view factor as a parameter in applied climatology - rapid estimation by the SkyHelios model. Meteorol. Zeitschrift, 20, 39-45, doi:10.1127/0941-2948/2011/0499.   DOI
27 Matzarakis, A., F. Rutz, and H. Mayer, 2007: Modeling radiation fluxes in simple and complex environments-application of the RayMan model. Int. J. Biometeorol., 51, 323-334.   DOI
28 Murphy, D. J., M. H. Hall, C. A. S. Hall, G. M. Heisler, S. V. Stehman, and C. Anselmi-Molina, 2011: The relationship between land cover and the urban heat island in northeastern Puerto Rico. Int. J. Climatol., 31, 1222-1239, doi:10.1002/joc.2145.   DOI
29 Oke, T. R., 1981: Canyon geometry and the nocturnal heat island: comparison of scale model and field observations. Int. J. Climatol., 1, 237-254.   DOI
30 Pigeon, G., D. Legain, P. Durand, and V. Masson, 2007: Anthropogenic heat release in an old European agglomeration (Toulouse, France). Int. J. Climatol., 27, 1969-1981.   DOI
31 Robitu, M., M. Musy, C. Inard, and D. Groleau, 2006: Modeling the influence of vegetation and water pond on urban microclimate. Sol. Energy, 80, 435-447.   DOI
32 Unger, J., 2009: Connection between urban heat island and sky view factor approximated by a software tool on a 3D urban database. Int. J. Environ. Pollut., 36, 59-80.   DOI
33 Sailor, D. J., 2011: A review of methods for estimating anthropogenic heat and moisture emissions in the urban environment. Int. J. Climatol., 31, 189-199, doi:10.1002/joc.2106.   DOI
34 Shaker, R. R., and T. D. Drezner, 2010: A new technique for predicting the sky view factor for urban heat island assessment. Geogr. Bull., 51, 85-96.
35 Souza, L. C. L., D. S. Rodrigues, and J. F. G. Mendes, 2003: Sky view factors estimation using a 3D-GIS extension. Proc. 8th Int. Conference on IBPSA, Eindhoven, 1227-1234.
36 Stathopoulou, M., and C. Cartalis, 2007: Daytime urban heat islands from Landsat ETM+ and Corine land cover data: An application to major cities in Greece. Sol. Energy, 81, 358-368.   DOI
37 Steyn, D. G., 1980: The calculation of view factors from fisheye-lens photographs: Research note. Atmosphere-Ocean, 18, 254-258.   DOI
38 Yamashita, S., K. Sekine, M. Shoda, K. Yamashita, and Y. Hara, 1986: On the relationships between heat island and sky view factor in the cities of Tama River Basin, Japan. Atmos. Environ., 20, 681-686.   DOI
39 Yang, F., S. S. Y. Lau, and F. Qian, 2010: Summertime heat island intensities in three high-rise housing quarters in inner-city Shanghai China: Building layout, density and greenery. Build. Environ., 45, 115-134, doi:10.1016/j.buildenv.2009.05.010.   DOI
40 Akbari, H., 2002: Shade trees reduce building energy use and $CO_2$ emissions from power plants. Environ. Pollut., 116, S119-S126.   DOI
41 Yi, C., S. M. An, K. R. Kim, H.-G. Kwon, and J.-S. Min, 2016: Surface micro-climate analysis based on urban morphological characteristics: temperature deviation estimation and evaluation. Atmosphere, 26, 445-459, doi:10.14191/Atmos.2016.26.3.445 (in Korean with Ehglish abstract).   DOI
42 Yi, C., K.-R. Kim, Y.-J. Choi, H. Y. Won, and S. Dieter, 2012: Nocturnal surface cooling and cold air transport analysis based on high density Observation - A case study of Eunpyeong New Town in Seoul. J. Korean Assoc. Geogr. Inf. Stud., 15, 124-137, doi:10.11108/kagis.2012.15.4.124 (in Korean with English abstract).   DOI
43 Yi, C., K.-R. Kim, S.-M. An, and Y.-J. Choi, 2014: Impact of the local surface characteristics and the distance from the center of heat island to suburban areas on the night temperature distribution over the Seoul metropolitan area. J. Korean Assoc. Geogr. Inf. Stud., 17, 35-49, doi:10.11108/kagis.2014.17.1.035 (in Korean with English abstract).   DOI