• 제목/요약/키워드: Canisters

검색결과 66건 처리시간 0.025초

서울지역에서의 VOCs 오염원 기여도 추정에 관한 연구 (Estimation of Quantitative Source Contribution of VOCs in Seoul Area)

  • 봉춘근;윤중섭;황인조;김창녕;김동술
    • 한국대기환경학회지
    • /
    • 제19권4호
    • /
    • pp.387-396
    • /
    • 2003
  • A field study was conducted during the summer time of 2002 to determine compositions of volatile organic compounds (VOCs) emitted from vehicles and to develop source emission profiles that is applied to CMB model to estimate the source contribution of certain area. Source emission profile is widely used for the estimation of source contribution by the chemical mass balance model and have to be developed applicable for the target area of estimation. This study was aimed to develop source emission profile and estimation of source contribution of VOCs after application of the chemical mass balance (CMB) receptor model. After considering the emission inventory and other research results for the VOCs in Seoul, Korea, the sources like vehicle emission (tunnel), gas station (gasoline, diesel), solvent usage (painting operation, dry cleaning, graphic art), and gas fuels were selected for the major VOCs sources. Furthermore, ambient air samples were simultaneously collected from 09:00 to 11:00 for four days at eight different official air quality monitoring sites as receptors in Seoul during summer of 2001. Source samples were collected by canisters, and then about seventy volatile organic compounds were analyzed by gas chromatography with flame ionization detector (GC/FID). Based on both the developed source profiles and the database of the receptors, CMB model was intensively applied to estimate mass contribution of VOCs sources. Examining the source profile from the vehicle, the portion of alkanes of VOCs was highest, and then the portion of aromatics such toluene, m/p-xylene were followed. In case of gas fuel. they have their own components; the content of butane, propane, ethane was higher than any other component according to the fuel usage. The average of the source apportionment on VOCs for 8 sites showed that the major sources were vehicle emission and gas fuels. The vehicle emission source was revealed as having the highest contribution with an average of 49.6%, and followed by solvent with 21.3%, gas fuel with 16.1%, gasoline with 13.1%.

국내 휘발유 자동차의 증발가스 배출 특성에 관한 연구 (A Study on the Evaporative Emission Characteristics of Korean Gasoline Vehicles)

  • 박준홍;박영표;임윤성;이종태;김정수;최광호
    • 한국자동차공학회논문집
    • /
    • 제19권4호
    • /
    • pp.121-129
    • /
    • 2011
  • Hydrocarbons which are the main sources of VOCs from motor vehicles are emitted not only from the engine exhaust gas but also from evaporation of the fuel in storage and supplying systems. Evaporative emissions from gasoline fuel systems could be classified by diurnal, hotsoak and running loss. Diurnal loss test procedures are different as countries. Korea introduced new evaporative regulation in 2009 with 24hour VT-shed test procedure and relaxed emission standards. The estimations on different test procedures in this study show that the new Korean regulation get a little more severe than before and the 2 day diurnal loss test of U.S. is the most severe. So the test procedures as well as the stronger standards should be considered in the next evaporative emission regulation to reduce VOCs from motor vehicles. The important parameters to affect evaporative emissions are air and fuel temperature and fuel vapor pressure. Diurnal loss increases exponentially as rising air temperature and vapor pressure. The effects of vapor pressure on running loss are different as the capacities of canisters. Tests with simulating real temperature and driving conditions show that hydrocarbons in evaporative emissions could be more than those in exhaust gas in summer season because of the higher air temperature.

Breakthrough behaviour of NBC canister against carbon tetrachloride: a simulant for chemical warfare agents

  • Srivastava, Avanish Kumar;Shah, D.;Mahato, T.H.;Singh, Beer;Saxena, A.;Verma, A.K.;Shrivastava, S.;Roy, A.;Yadav, S.S.;Shrivastava, A.R.
    • Carbon letters
    • /
    • 제13권2호
    • /
    • pp.109-114
    • /
    • 2012
  • A nuclear, biological, chemical (NBC) canister was indigenously developed using active carbon impregnated with ammoniacal salts of copper (II), chromium (VI) and silver (I), and high efficiency particulate aerosol filter media. The NBC canister was evaluated against carbon tetra chloride ($CCl_4$) vapours, which were used as a simulant for persistent chemical warfare agents under dynamic conditions for testing breakthrough times of canisters of gas masks in the National Approval Test of Respirators. The effects of $CCl_4$ concentration, test flow rate, temperature, and relative humidity (RH) on the breakthrough time of the NBC canister against $CCl_4$ vapour were also studied. The impregnated carbon that filled the NBC canister was characterized for surface area and pore volume by $N_2$ adsorption-desorption isotherm at liquid nitrogen temperature. The study clearly indicated that the NBC canister provides adequate protection against $CCl_4$ vapours. The breakthrough time decreased with the increase of the $CCl_4$ concentration and flow rate. The variation in temperature and RH did not significantly affect the breakthrough behaviour of the NBC canister at high vapour concentration of $CCl_4$, whereas the breakthrough time of the NBC canister was reduced by an increase of RH at low $CCl_4$ vapour concentration.

황산염환원미생물에 의한 금속재료의 부식 특성 (Corrosive Characteristics of Metal Materials by a Sulfate-reducing Bacterium)

  • 이승엽;정종태
    • 한국광물학회지
    • /
    • 제26권4호
    • /
    • pp.219-228
    • /
    • 2013
  • 방사성 폐기물을 지하에 장기 보관하는 금속 용기에 관한 생지화학적 부식 특성을 알아보기 위해 주철과 구리로 된 금속재료를 환원조건 하에서 디설프리칸스 황산염환원미생물과 3개월간 반응시켰다. 금속재료의 화학적/광물학적 변화를 알아보기 위해 주기적으로 용존 금속이온들의 농도를 측정하였으며, 실험이 종료된 이후 금속 시편 및 표면 이차생성물들을 전자현미경을 이용하여 분석하였다. 디설프리칸스가 없는 조건에서는 금속재료의 부식이 매우 미약하였으나, 미생물이 있는 경우에는 부식이 상대적으로 컸다. 관찰된 생지화학적 부식 산물은 주로 맥키나와이트와 황화구리 같은 검은색의 금속황화물이었으며, 표면에서 쉽게 분리되거나 콜로이드화되어 부유하였다. 특히, 구리 시편의 경우 용액 상에 용존 철이 존재할 때 세균에 의한 구리 부식의 가속화가 관찰되었는데, 이는 구리 표면에 다른 종의 황화철이 성장하면서 구리 간의 결속력을 약화시켰기 때문인 것으로 보인다.

압축 벤토나이트 완충재의 온도에 따른 열전도도 평가 (Thermal Conductivity Evaluation of Compacted Bentonite Buffers Considering Temperature Variations)

  • 윤석;박승훈;김민섭;김건영;이승래
    • 방사성폐기물학회지
    • /
    • 제18권1호
    • /
    • pp.43-49
    • /
    • 2020
  • 고준위폐기물을 심지층에 처분하기 위한 공학적방벽의 구성 요소로는 처분용기, 완충재, 뒷채움재 등이 있다. 이 중 완충재는 처분용기와 근계암반 사이의 빈 공간에 설치되는 물질로써, 주변 지하수로부터 처분용기를 보호하며 방사성 핵종의 유출을 저지하는 등의 역할을 한다. 또한 처분용기에서 발생하는 고온의 열량은 완충재로 직접 전파되기에 완충재의 열전도도는 처분시스템의 안전성 평가에 있어 매우 중요하다고 할 수 있다. 따라서 본 연구에서는 국내 경주산 압축 벤토나이트 완충재의 열전도도 특성을 규명하였으며 실제 처분용기에서 발생되는 고온의 특성을 반영하여 상온에서 80~90℃까지의 범위에서 압축 벤토나이트의 열전도도를 측정하였다. 온도증가에 따라 압축 벤토나이트의 열전도도는 5~20% 가량 증가하였으며 초기 포화도가 클수록 열전도도 증가는 더 크게 나타났다.

DEVELOPMENT OF GEOLOGICAL DISPOSAL SYSTEMS FOR SPENT FUELS AND HIGH-LEVEL RADIOACTIVE WASTES IN KOREA

  • Choi, Heui-Joo;Lee, Jong Youl;Choi, Jongwon
    • Nuclear Engineering and Technology
    • /
    • 제45권1호
    • /
    • pp.29-40
    • /
    • 2013
  • Two different kinds of nuclear power plants produce a substantial amount of spent fuel annually in Korea. According to the current projection, it is expected that around 60,000 MtU of spent fuel will be produced from 36 PWR and APR reactors and 4 CANDU reactors by the end of 2089. In 2006, KAERI proposed a conceptual design of a geological disposal system (called KRS, Korean Reference disposal System for spent fuel) for PWR and CANDU spent fuel, as a product of a 4-year research project from 2003 to 2006. The major result of the research was that it was feasible to construct a direct disposal system for 20,000 MtU of PWR spent fuels and 16,000 MtU of CANDU spent fuel in the Korean peninsula. Recently, KAERI and MEST launched a project to develop an advanced fuel cycle based on the pyroprocessing of PWR spent fuel to reduce the amount of HLW and reuse the valuable fissile material in PWR spent fuel. Thus, KAERI has developed a geological disposal system for high-level waste from the pyroprocessing of PWR spent fuel since 2007. However, since no decision was made for the CANDU spent fuel, KAERI improved the disposal density of KRS by introducing several improved concepts for the disposal canister. In this paper, the geological disposal systems developed so far are briefly outlined. The amount and characteristics of spent fuel and HLW, 4 kinds of disposal canisters, the characteristics of a buffer with domestic Ca-bentonite, and the results of a thermal design of deposition holes and disposal tunnels are described. The different disposal systems are compared in terms of their disposal density.

일차수응력부식균열(PWSCC) 및 염화이온부식균열(CISCC) 저감용 표면개질기술 적용을 위한 코드케이스 개발 (Development of New Code Case "Mitigation of PWSCC and CISCC in ASME Code Section III Components by the Advanced Surface Stress Improvement Technology)

  • 조성우;편영식;;;;;이원근;오은종;장동현;구경회;황성식;최선웅;홍현욱
    • 한국압력기기공학회 논문집
    • /
    • 제15권1호
    • /
    • pp.28-32
    • /
    • 2019
  • In nuclear power plant operation and spent fuel canisters, it is necessary to provide a sound technical basis for the safety and security of long-term operation and storage respectively. Recently, the peening technology is being discussed and the technology will be adopted to ASME Section III, Division 1, Subsection NX (2019 Edition). The peening is prohibited in current edition, but it will be approved in 2019 Edition and adopted. However, Surface stress improvement techniques such as the peening is used to mitigate SCC susceptible in operating nuclear plants. Although the peening will be approved to ASME CODE, there are no performance criteria listed in the 2019 edition. The Korean International Working Group (KIWG) formed a new Task Group named "Advanced Surface Stress Improved Technology". The task group will develop a CODE CASE to address PWSCC(Primary Water Stress Corrosion Cracking) and CISCC(Chloride Induced Stress Corrosion Cracking) for new ASME Section III components. TG-ASSIT was started to make peening performance criteria for ASME Section III (new fabrication) applications. The objective of TG-ASSIT is to gain consensus among the relevant Code groups that requirements/mitigation have been met.

Development of a duplex stainless steel for dry storage canister with improved chloride-induced stress corrosion cracking resistance

  • Chaewon Jeong;Ji Ho Shin;Byeong Seo Kong;Junjie Chen;Qian Xiao;Changheui Jang;Yun-Jae Kim
    • Nuclear Engineering and Technology
    • /
    • 제56권6호
    • /
    • pp.2131-2140
    • /
    • 2024
  • The chloride-induced stress corrosion cracking (CISCC) is one of the major integrity concerns in dry storage canisters made of austenitic stainless steels (ASSs). In this study, an advanced duplex stainless steel (DSS) with a composition of Fe-19Cr-4Ni-2.5Mo-4.5Mn (ADCS) was developed and its performance was compared with that of commercial ASS and DSS alloys. The chemical composition of ADCS was determined to obtain greater pitting and CISCC resistance as well as a proper combination of strength and ductility. Then, the thermomechanical processing (TMP) condition was applied, which resulted in higher strength than ASSs (304L SS and 316L SS) and better ductility than DSSs (2101 LDSS and 2205 DSS). The potentiodynamic polarization and electrochemical impedance spectra (EIS) results represented the better pitting corrosion resistance of ADCS compared to 304L SS and 316L SS by forming a better passive layer. The CISCC tests using four-point loaded specimens showed that cracks were initiated at 24 h for 304L SS and 144 h for 316L SS, while crack was not found until 1008 h for ADCS. Overall, the developed alloy, ADCS, showed better combination of CISCC resistance and mechanical properties as dry storage canister materials than commercial alloys.

Short-acting β2-agonist prescriptions in patients with asthma: findings from the South Korean cohort of SABINA III

  • Kwang-Ha Yoo;Sang-Ha Kim;Sang-Heon Kim;Ji-Yong Moon;Heung-Woo Park;Yoon-Seok Chang;Maarten J.H.I Beekman
    • The Korean journal of internal medicine
    • /
    • 제39권1호
    • /
    • pp.123-136
    • /
    • 2024
  • Background/Aims: Despite short-acting β2-agonist (SABA) overuse being associated with poor asthma outcomes, data on SABA use in South Korea is scarce. Herein, we describe prescription patterns of SABA and other asthma medications in patients from the South Korean cohort of the SABA use IN Asthma (SABINA) III study. Methods: This study included patients with asthma aged ≥ 12 years, who had ≥ 3 consultations with the same healthcare provider, and medical records containing data for ≥ 12 months prior to the study visit. Patients were classified by investigator-defined asthma severity (per 2017 Global Initiative for Asthma recommendations) and practice type (primary or specialist care). Data on disease characteristics, asthma treatments, and clinical outcomes in the 12 months before the study visit were collected using electronic case report forms. Results: Data from 476 patients (mean age, 55.4 years; female, 63.0%) were analyzed. Most patients were treated by specialists (83.7%) and had moderate-to-severe asthma (91.0%). Overall, 7.6% of patients were prescribed ≥ 3 SABA canisters (defined as over-prescription). In patients prescribed SABA in addition to maintenance therapy, 47.4% were over-prescribed SABA. Most patients (95.4%) were prescribed a fixed-dose combination of an inhaled corticosteroid and a long-acting β2-agonist as maintenance therapy. Although asthma was well-controlled/partly-controlled in 91.6% of patients, 29.6% experienced ≥ 1 severe asthma exacerbation. Conclusions: SABA over-prescription was reported in nearly 50% of patients prescribed SABA in addition to maintenance therapy, underscoring the need to align clinical practices with the latest evidence-based recommendations and educate physicians and patients on appropriate SABA use.

휘발성유기화합물의 배출원 구성물질 성분비에 관한 기초 연구 (A Preliminary Study on the Source Fingerprints of Volatile Organic Compounds)

  • 이영재;이학성;강병욱;신대윤
    • 한국환경과학회지
    • /
    • 제12권4호
    • /
    • pp.487-496
    • /
    • 2003
  • 본 연구에서 실시한 VOC의 각 배출원별 구성물질 성분비를 조사한 결과로부터 다음과 같은 결론을 얻었다. 1) 우리나라의 VOC 주요 배출원에서 배출되는 성분은 주로 toluene으로서 도로포장 배출물질과 자동차, 도장시설, 가솔린증기 구성성분이 각각 35, 18, 16, 5%로 높은 분율을 차지하고 있음을 알 수 있었다. 2) 자동차와 주유소 그리고 가솔린 저장탱크 배출 물질의 경우 주로 $C_{5}$ 이하의 성분들이 배출되었는데, 이들 성분들은 주로 휘발유를 취급하는 곳에서 상당량 배출되고 있었다. 3) 도장시설에서는 m/p-xylene과 toluene, 1,2,4-TMB, o-xylene 둥이 각각 34, 16, 10, 9%로 배출되고 있어 주로 방향족 화합물들이 많이 배출되고 있었다. 4) 세탁시설에서는 주로 석유계 연료를 사용하고 있어 nonane이 41%, 1,2,4-TMB가 22%, 1,3,5-TMB가 13%로 배출되었으며, 도로포장시 아스팔트에서는 toluene과 benzene, m/p-xylene, o-xylene, ethyl benzene 등of 각각 35, 10, 4, ,3, 2%로 배출되고 있어 BTEX가 상당량 배출되고 있었다. 5) 본 연구의 경우 시료채취시 약 20초간의 짧은 시료채취이므로 정확한 자료를 얻기 위해서는 비교적 장시간을 채취하여 분석하여야 될 것으로 사료되며, 도로포장의 경우 시료채취지점으로 부터 약 100m 전방에 편도 2차선의 도로가 있어 자동차 배출물질이 다소 포함되었을 가능성이 있음을 밝혀둔다.