DOI QR코드

DOI QR Code

Thermal Conductivity Evaluation of Compacted Bentonite Buffers Considering Temperature Variations

압축 벤토나이트 완충재의 온도에 따른 열전도도 평가

  • Received : 2019.10.22
  • Accepted : 2020.02.19
  • Published : 2020.03.30

Abstract

An engineered barrier system (EBS) for the geological disposal of high-level radioactive waste (HLW) consists of a disposal canister packed with spent fuel, buffer material, backfill material, and gap-filling material. The buffer material fills the space between the canister and the near-field rock, thus serving to restrain the release of radionuclides and protect the canister from groundwater penetration. Furthermore, as significant amounts of heat energy are released from the canister to the surrounding rock, the thermal conductivity of the buffer plays an important role in maintaining the safety of the entire disposal system. Therefore, given the high levels of heat released from disposal canisters, this study measured the thermal conductivities of compacted bentonite buffers from Gyeongju under temperature variations ranging 25 to 80~90℃. There was a 5~20% increase in thermal conductivity as the temperature increased, and the temperature effect increased as the degree of saturation increased.

고준위폐기물을 심지층에 처분하기 위한 공학적방벽의 구성 요소로는 처분용기, 완충재, 뒷채움재 등이 있다. 이 중 완충재는 처분용기와 근계암반 사이의 빈 공간에 설치되는 물질로써, 주변 지하수로부터 처분용기를 보호하며 방사성 핵종의 유출을 저지하는 등의 역할을 한다. 또한 처분용기에서 발생하는 고온의 열량은 완충재로 직접 전파되기에 완충재의 열전도도는 처분시스템의 안전성 평가에 있어 매우 중요하다고 할 수 있다. 따라서 본 연구에서는 국내 경주산 압축 벤토나이트 완충재의 열전도도 특성을 규명하였으며 실제 처분용기에서 발생되는 고온의 특성을 반영하여 상온에서 80~90℃까지의 범위에서 압축 벤토나이트의 열전도도를 측정하였다. 온도증가에 따라 압축 벤토나이트의 열전도도는 5~20% 가량 증가하였으며 초기 포화도가 클수록 열전도도 증가는 더 크게 나타났다.

Keywords

References

  1. W.J. Cho, "Radioactive waste disposal", KAERI/GP-495/2017 (2017).
  2. M.V. Villar, P.L. Martin, and J.M. Barcala, "Modification of physical, mechanical and hydraulic properties of bentonite by thermo-hydraulic gradients", Eng. Geol., 81, 284-297 (2006). https://doi.org/10.1016/j.enggeo.2005.06.012
  3. P. Wersin, L.H. Johnson, and M. Snellman, "Impact of iron related released from steel components on the performance of the bentonite buffer: A preliminary assessment within the framework of the KBS-3H disposal concept", Materials Research Society Symposium Proceedings, 932, 95-102 (2006).
  4. M.J. Kim, S.R. Lee, S. Yoon, J.S. Jeon, and M.S. Kim, "Effect of thermal properties of bentonite buffer on temperature variation", J. Korean Geotech Soc., 34(1), 17-24 (2018). https://doi.org/10.7843/kgs.2018.34.1.17
  5. K.A. Daniel, J.F. Harrington, S.G. Zihms, and A.C. Wiseall, "Bentonite permeability at elevated temperature", Geoscience, 7, 3 (2017). https://doi.org/10.3390/geosciences7010003
  6. S.G. Zihms, and J.F. Harriongton, "Thermal cycling: impact on bentonite permeability" Mineral. Mag., 79(6), 1543-1550 (2015). https://doi.org/10.1180/minmag.2015.079.6.29
  7. B.M. Das, "Principle of geotechnical engineering", 6th edition, Nelson (2006).
  8. S. Yoon, M.J. Kim, S.R. Lee, and G.Y. Kim, "Thermal conductivity estimation model of compacted bentonite buffer materials for a high-level radioactive waste repository", Nucl. Technol., 204, 213-226 (2018). https://doi.org/10.1080/00295450.2018.1471909
  9. Y. Xu, D. Sun, Z. Zeng, and H. Lv, "Temperature dependence of apparent thermal conductivity of compacted bentonite as buffer material for high-level radioactive waste repository", Appl. Clay Sci. 174, 10-14 (2019). https://doi.org/10.1016/j.clay.2019.03.017
  10. A.M. Tang, Y.J. Cui, and T.T. Lee, "A study on the thermal conductivity of compacted bentonite", Appl. Clay Sci., 41, 181-189 (2008). https://doi.org/10.1016/j.clay.2007.11.001
  11. C. Ould-Lahoucine, H. Sakashita, and T. Kumada, "Measurement of thermal conductivity of buffer materials and evaluation of existing correlation predicting it", Nucl. Eng. Des., 216, 1-11 (2002). https://doi.org/10.1016/S0029-5493(02)00033-X
  12. J.W. Lee, H.J. Choi, and J.Y. Lee, "Thermal conductivity of compacted bentonite as a buffer material for a high-level radioactive waste repository", Ann. Nucl. Energy, 94, 848-855 (2016). https://doi.org/10.1016/j.anucene.2016.04.053
  13. S. Yoon, W.Cho, C. Lee, and G.Y. Kim, "Thermal conductivity of Korean compacted bentnonite buffer materials for a nuclear waste repository", Energies, 11, 2269 (2018). https://doi.org/10.3390/en11092269
  14. H. Park, "Thermal conductivities of unsaturated Korean weathered granite soils", Master Thesis, KAIST, Korea (2011).
  15. K.I. Horai, "Thermal conductivity of rock-forming minerals", J. Geophys. Res., 76(5), 1278-1308 (1971). https://doi.org/10.1029/JB076i005p01278
  16. M. Yoo, H.J. Choi, M.S.Lee, and S.Y. Lee, "Measurement of properties of domestic bentonite for a buffer of an HLW repository", J. Nucl. Fuel Cycle Waste Technol., 14(2), 135-147 (2016). https://doi.org/10.7733/jnfcwt.2016.14.2.135
  17. M.S. Lee, H.J. Choi, J.O. Lee, and J.P. Lee, "Improvement of the thermal conductivity of a compact bentonite buffer", Korea Atomic Energy Research Institute Technical Report, KAERI/TR-5311/2013 (2013).
  18. J.O. Lee, W.J. Cho, and S. Kwon, "Thermal-hydromechanical properties of reference bentonite buffer for a Korean HLW repository", Tunnel and Underground Space, 21(4), 264-273 (2011). https://doi.org/10.7474/TUS.2011.21.4.264
  19. J.R. Phillip and D.A.D. Vries, "Moisture movement in porous materials under temperature gradients", Trans. Am. Geophys. Union, 38, 222-232 (1957). https://doi.org/10.1029/TR038i002p00222
  20. K.M. Smith, T. Sakaki, S.E. Howington, J.F. Peters, and T.H. Illangasekare, "Temperature dependence of thermal properties of sands across a wide range of temperatures ($30-70^{\circ}C$)", Vadose Zone J., 138(4), 2256-2265 (2013).
  21. A. Beziat, M. Dardaine, and V. Gabis, "Effect of compaction pressure and water content on the thermal conductivity of some natural clays", Clays and Clay Miner., 36(5), 462-466 (1998). https://doi.org/10.1346/CCMN.1988.0360512
  22. M.V. Villar, "Thermo-hydro-mechanical characterization and process in the clay barrier of a high level radioactive waste repository", State of the Art Report. Informes Tecnicos Ciemat 1044, Octubre (2004)
  23. Y.A. Cengez and A.J. Ghajar, "Heat and mass transfer: fundamentals and applications", Fourth edition, McGraw Hill Education (2011)