• Title/Summary/Keyword: Cancer - apoptosis

Search Result 2,415, Processing Time 0.038 seconds

Protective effect of Gabjubaekmok (Diospyros kaki) extract against amyloid beta (Aβ)-induced cognitive impairment in a mouse model (아밀로이드 베타(amyloid beta)로 유도된 인지장애 마우스 모델에서 갑주백목(Diospyros kaki) 추출물의 인지기능 및 뇌 신경세포 보호 효과)

  • Yoo, Seul Ki;Kim, Jong Min;Park, Seon Kyeong;Kang, Jin Yong;Han, Hye Ju;Park, Hyo Won;Kim, Chul-Woo;Lee, Uk;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.4
    • /
    • pp.379-392
    • /
    • 2019
  • The current study investigated the effect of Gabjubaekmok (Diospyros kaki) ethanolic extract (GEE) on $H_2O_2$-induced human neuroblastoma MC-IXC cells and amyloid beta $(A{\beta})_{1-42}$-induced ICR (Institute of Cancer Research) mice. GEE showed significant antioxidant activity that was evaluated based on ABTS, DPPH scavenging activity, and inhibition of malondialdehyde (MDA) and acetylcholinesterase activity. Further, GEE inhibited ROS production and increased cell viability in $H_2O_2$-induced MC-IXC cells. Administration of GEE ameliorated the cognitive dysfunction on $A{\beta}$-induced ICR mice as evaluated using Y-maze, passive avoidance, and Morris water maze tests. Results of ex vivo test using brain tissues showed that, GEE protected the cholinergic system and mitochondrial functions by increasing the levels of antioxidants such as ROS, mitochondrial membrane potential (MMP), and adenosine triphosphate (ATP) against $A{\beta}$-induced cognitive dysfunction. Moreover, GEE decreasd the expression levels of apoptosis-related proteins such as $TNF-{\alpha}$, p-JNK, p-tau, BAX and caspase 3. While, expression levels of p-Akt and $p-GSK3{\beta}$ increased than $A{\beta}$ group. Finally, gallic acid was identified as the main compound of GEE using high performance liquid chromatography.

Regulatory Mechanism of Insulin-Like Growth Factor Binding Protein-3 in Non-Small Cell Lung Cancer (비소세포성 폐암에서 인슐린 양 성장 인자 결합 단백질-3의 발현 조절 기전)

  • Chang, Yoon Soo;Lee, Ho-Young;Kim, Young Sam;Kim, Hyung Jung;Chang, Joon;Ahn, Chul Min;Kim, Sung Kyu;Kim, Se Kyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.56 no.5
    • /
    • pp.465-484
    • /
    • 2004
  • Background : Insulin-like growth factor (IGF)-binding protein-3 (IGFBP-3) inhibits the proliferation of non-small cell lung cancer (NSCLC) cells by inducing apoptosis. Methods : In this study, we investigated whether hypermethylation of IGFBP-3 promoter play an important role in the loss of IGFBP-3 expression in NSCLC. We also studied the mechanisms that mediate the silencing of IGFBP-3 expression in the cell lines which have hypermethylated IGFBP-3 promoter. Results : The IGFBP-3 promoter has hypermethylation in 7 of 15 (46.7%) NSCLC cell lines and 16 (69.7%) of 23, 7 (77.8%) of 9, 4 (80%) of 5, 4 (66.7 %) of 6, and 6 (100%) of 6 tumor specimens from patients with stage I, II, IIIA, IIIB, and IV NSCLC, respectively. The methylation status correlated with the level of protein and mRNA in NSCLC cell lines. Expression of IGFBP-3 was restored by the demethylating agent 5'-aza-2'-deoxycytidine (5'-aza-dC) in a subset of NSCLC cell lines. The Sp-1/ Sp-3 binding element in the IGFBP-3 promoter, important for promoter activity, was methylated in the NSCLC cell lines which have reduced IGFBP-3 expression and the methylation of this element suppressed the binding of the Sp-1 transcription factor. A ChIP assay showed that the methylation status of the IGFBP-3 promoter influenced the binding of Sp-1, methyl-CpG binding protein-2 (MeCP2), and histone deacetylase (HDAC) to Sp-1/Sp-3 binding element, which were reversed by by 5'-aza-dC. In vitro methylation of the IGFBP-3 promoter containing the Sp-1/Sp-3 binding element significantly reduced promoter activity, which was further suppressed by the overexpression of MeCP2. This reduction in activity was rescued by 5'-aza-dC. Conclusion : These findings indicate that hypermethylation of the IGFBP-3 promoter is one mechanism by which IGFBP-3 expression is silenced and MeCP2, with recruitment of HDAC, may play a role in silencing of IGFBP-3 expression. The frequency of this abnormality is also associated with advanced stages among the patients with NSCLC, suggesting that IGFBP-3 plays an important role in lung carcinogenesis/progression and that the promoter methylation status of IGFBP-3 may be a marker for early molecular detection and/or for monitoring chemoprevention efforts.

The Histone Methyltransferase Inhibitor BIX01294 Inhibits HIF-1α Stability and Angiogenesis

  • Oh, Su Young;Seok, Ji Yoon;Choi, Young Sun;Lee, Sung Hee;Bae, Jong-Sup;Lee, You Mie
    • Molecules and Cells
    • /
    • v.38 no.6
    • /
    • pp.528-534
    • /
    • 2015
  • Hypoxia-inducible factor (HIF) is a key regulator of tumor growth and angiogenesis. Recent studies have shown that, BIX01294, a G9a histone methyltransferase (HMT)-specific inhibitor, induces apoptosis and inhibits the proliferation, migration, and invasion of cancer cells. However, not many studies have investigated whether inhibition of G9a HMT can modulate HIF-$1{\alpha}$ stability and angiogenesis. Here, we show that BIX01294 dose-dependently decreases levels of HIF-$1{\alpha}$ in HepG2 human hepatocellular carcinoma cells. The half-life of HIF-$1{\alpha}$, expression of proline hydroxylase 2 (PHD2), hydroxylated HIF-$1{\alpha}$ and von Hippel-Lindau protein (pVHL) under hypoxic conditions were decreased by BIX01294. The mRNA expression and secretion of vascular endothelial growth factor (VEGF) were also significantly reduced by BIX01294 under hypoxic conditions in HepG2 cells. BIX01294 remarkably decreased angiogenic activity induced by VEGF in vitro, ex vivo, and in vivo, as demonstrated by assays using human umbilical vein endothelial cells (HUVECs), mouse aortic rings, and chick chorioallantoic membranes (CAMs), respectively. Furthermore, BIX01294 suppressed VEGF-induced matrix metalloproteinase 2 (MMP2) activity and inhibited VEGF-induced phosphorylation of VEGF receptor 2 (VEGFR-2), focal adhesion kinase (FAK), and paxillin in HUVECs. In addition, BIX01294 inhibited VEGF-induced formation of actin cytoskeletal stress fibers. In conclusion, we demonstrated that BIX01294 inhibits HIF-$1{\alpha}$ stability and VEGF-induced angiogenesis through the VEGFR-2 signaling pathway and actin cytoskeletal remodeling, indicating a promising approach for developing novel therapeutics to stop tumor progression.

Toxicity and Endocrine Disrupting Effect of Parabens (파라벤류의 독성과 내분비계장애 효과)

  • Ahn, Hae-Sun;Nah, Won-Heum;Lee, Jae-Eun;Oh, Yeong-Seok;Gye, Myung-Chan
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.4
    • /
    • pp.323-333
    • /
    • 2009
  • Parabens are alkyl esters of p-hydroxybenzoic acid, which are widely used in foods, cosmetics, and pharmaceutic products as preservatives. Absorbed parabens are metabolized fastly and excreted. Actually human body is exposed to complex mixture of parabens. Safety assessment at various toxicological end points revealed parabens have a little acute, subacute and chronic toxicities. Some reports have argued that as parabens have estrogenic activity, they are associated with the incidence of breast cancer through dermal absorption by cosmetics. There is an inference that antiandrogenic activity of parabens may give rise to a lesion of male reproductive system, but also there is an contrary. At cellular level, parabens may inhibit mitochondrial function of sperms and androgen production in testis, but also there is an contrary. Parabens seem to have little or no toxicity in embryonic development. Parabens can cause hemolysis, membrane permeability change in mitochondria and apoptosis, suggesting cellular toxicity of parabens. Parabens evoked endocrine disruption in several fish species and have toxic effect on small invertebrates and microbes. Therefore, the toxicity of parabens should be considered as a potentially toxic chemical in the freshwater environment. In conclusion, though parabens may be considered as a low toxic chemical, more definite data are required concerning the endocrine disrupting effect of parabens on human body and aquatic animals according to route and term of exposure as well as the residual concentration of parabens.

Improvement of Anticancer Activation of Ultrasonificated Extracts from Acanthopanax senticosus Harms, Ephedra sinica Stapf, Rubus coreanus Miq. and Artemisia capillaris Thunb (초음파 병행 추출을 이용한 가시오갈피, 마황, 복분자 및 인진쑥의 항암활성 증진)

  • Park, Jin-Hong;Lee, Hyun-Soo;Mun, Hyoung-Chul;Kim, Dae-Ho;Seong, Nak-Sul;Jung, Hae- Gon;Bang, Jin-Ki;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.12 no.4
    • /
    • pp.273-278
    • /
    • 2004
  • The anticancer activities of the extracts from Acanthopanax senticosus Harms, Ephedra sinica Stapf, Rubus coreanus Miq and Artemisia capillaris Thunb were compared according to extract systems. About 70% of the growth of human hepatocarcinoma cancer cell was inhibited in adding 1.0 mg/ml of the water extract from Rubus coreanus Miq with ultrasonification at $60^{\circ}C$. The growth of human normal lung cell was limited to 25% in adding the extracts with ultrasonification at $60^{\circ}C$. The effect of extracts obtained by only water and with ultrasonification on different of human promyelocytic leukemia cells was also observed.

In Vitro Radiosensitization of Flavopiridol Did Not Translated into In Vivo Radiosensitization (마우스를 이용한 생체내 실험에서의 플라보피리돌의 방사선민감화 효과)

  • Kim, Su-Zy
    • Radiation Oncology Journal
    • /
    • v.29 no.2
    • /
    • pp.83-90
    • /
    • 2011
  • Purpose: Flavopiridol enhanced radiation-induced apoptosis of cancer cells in our previous in vitro study. The purpose of this study was to assess if flavopiridol could enhance the radioresponse of mouse mammary tumors in vivo. Materials and Methods: Balb/c mice bearing EMT-6 murine mammary carcinoma were treated with flavopiridol only, radiation only, or both for 7 days. Flavopiridol was administered 2.5 mg/kg twice a day intraperitoneally (IP). Radiation was delivered at a 4 Gy/fraction at 24-h intervals for a total dose of 28 Gy. Tumor volume was measured and compared among the different treatment groups to evaluate the in vivo radiosensitizing effect of flavopiridol. Tumors were removed from the mice 20 days after treatment, and TUNEL and Immunohistochemical stainings were performed. Results: Significant tumor growth delay was observed in the radiation only and combined treatment groups, when compared with the control group. However, there was no significant difference between the tumor growth curves of the control and flavopiridol only group or between the radiation only and combination treatment group. Apoptotic cells of different treatment groups were detected by terminal deoxynucleotidyl transferase-medicated nick end labeling (TUNEL) staining. The expressions of Ku70 in tumor tissues from the different groups were analyzed by immunohistochemistry. Similarly, no significant difference was found between the apoptotic rate or Ku70 expression among the different treatment groups. Conclusion: Flavopiridol did not show evidence of enhancing the radioresponse of mouse mammary tumors in this study.

The Protective Activity of Soeumin Bojungykgi-tang Water Extract Against Oxidative Stress-induced Hepato-Toxicity (산화적 스트레스로 유도된 간손상에 대한 소음인보중익기탕 열수추출물의 간세포보호효과)

  • Son, Jin Won;Jung, Ji Yun;Kim, Kwang-Youn;Hwangbo, Min;Park, Chung A;Cho, IL Je;Back, Young Doo;Jung, Tae Young;Kim, Sang Chan;Jee, Seon Young
    • Herbal Formula Science
    • /
    • v.25 no.4
    • /
    • pp.509-526
    • /
    • 2017
  • Background and objectives : Soeumin Bojungykgi-tang (seBYTE) has been used to supplement qi in Korean medicine. It has been demonstrated to possess various biological functions such as anti-cancer, anti-aging and anti-inflammatory effects. The present study evaluated the protective roles of seBYTE in hepatotoxic in vitro and in vivo model. Methods : To investigate cytoprotective effect of seBYTE, HepG2 cells were pretreated with seBYTE and then subsequently exposed to $10{\mu}m$ AA for 12 h, followed by $5{\mu}m$ iron. Cell viability was examined by MTT assay, and expression of apoptosis-related proteins was evaluated by immunoblot analysis. For responsible molecular mechanisms, ROS production, GSH contents, and mitochondrial membrane potential were measured. In addition, hepatoprotective effect of seBYTE in vivo was assessed in $CCl_4$-induced animal model. Results : seBYTE prevented AA + iron-induced cytotoxicity in concentration dependent manner. In addition, ROS production, GSH depletion, and mitochondrial dysfunction induced by AA + iron were significantly reduced by seBYTE pretreatment. Furthermore, seBYTE recovered expression of the pro-apoptotic proteins such as PARP and pro-caspase-3. In animal experiment, plasma ALT and AST levels were significantly elevated in $CCl_4$ treatment, but seBYTE significantly decreased the ALT and AST levels. Moreover, seBYTE alleviated the numbers of histological activity index, percentages of degenerative regions, degenerated hepatocytes, infiltrated inflammatory cells, nitrotyrosine- and 4-hydroxynonenal-positive cells in liver. Conclusions : These results showed that hepatoprotective effect of seBYTE against on $CCl_4$-induced hepatic damages is partly due to antioxidative and anti-apoptotic process.

Gleditsia Spina Extract Protects Hepatocytes from Oxidative Stress through Nrf2 Activation (皂角刺 추출물의 Nrf2 활성화를 통한 간세포 보호 효과)

  • Kim, Jae Kwang;Park, Sang Mi;Jegal, Kyung Hwan;Kim, Young Woo;Byun, Sung Hui;Kim, Sang Chan;Cho, Il Je
    • The Korea Journal of Herbology
    • /
    • v.30 no.4
    • /
    • pp.57-64
    • /
    • 2015
  • Objectives : Oxidative stress is one of the most causes of hepatocyte injury. Gleditsia spina, the thorns ofGleditsia sinensisLam., has been known for its anti-cancer and anti-inflammatory effects in Korean medicine. The present study investigated hepatoprotective effect of Gleditsia spina water extract (GSE) against oxidative stress induced by arachidonic acid (AA) + iron in HepG2 cells.Methods : To investigate cytoprotective effect of GSE, cells were pretreated with GSE and then subsequently exposed to 10 μM AA for 12 h, followed by 5 μM iron. Cell viability was monitored by MTT assay, and expression of apoptosis-related proteins was examined by immunoblot analysis. To identify responsible molecular mechanisms, reactive oxygen species (ROS) production, GSH contents, and mitochondrial membrane potential were measured. In addition, effect of GSE on nuclear factor erythroid 2-related factor 2 (Nrf2) activation was determined by immunoblot and antioxidant response element (ARE)-driven reporter gene assays.Results : GSE pretreatment prevented AA + iron-mediated cytotoxicity in concentration dependent manner. In addition, ROS production, glutathione depletion, and mitochondrial impairment by AA + iron were significantly inhibited by GSE. Furthermore, GSE promoted translocation of Nrf2 to nucleus, which acts as essential transcription factor for induction of antioxidant genes. Increased nuclear Nrf2 that caused by GSE treatment promoted transcriptional activity of ARE. Finally, GSE up-regulated sestrin-2 which was widely recognized as target gene of Nrf2.Conclusions : This study demonstrates that GSE protects hepatocytes from oxidative stress via activation of Nrf2 signaling pathway.

The Amount of Telomeric DNA and Telomerase Activity on Cattle Cells (소의 생리적 특성에따름 세포내 텔로미어 함량과 텔로머레이스 활성도 분석)

  • Choi, Duk-Soon;Cho, Chang-Yeon;Sohn, Sea-Hwan
    • Journal of Animal Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.445-456
    • /
    • 2008
  • Telomeres consist of TTAGGG tandem repeated DNA sequences with specific proteins and locate at chromosome ends. Telomeres are essential for chromosome stability and are related with cell senescence, apoptosis and cancer. Telomerase is a ribonucleoprotein which has a template for the synthesis of telomeric DNA. This study was carried out to analyze the amount of telomeric DNA and telomerase activity in cattle cells. Analysis of the quantity of telomere in lymphocytes was done at different ages, sex and among Korean cattle and Holstein breeds. The telomerase activity was also analyzed in liver, brain, heart, kidney, and testis tissues of fetal calf and of 18 month old cattle. The amount of telomeres in lymphocytes and other tissue cells was analyzed by Quantitative-Fluorescence in situ Hybridization (Q-FISH) technique using a telomeric DNA probe. Telomerase activity was analyzed by Telomeric Repeat Amplification Protocol assay (TRAP). The amount of telomeric DNA on the lymphocytes during the whole life span was decreased along with age. Quantity of telomeres in Korean cattle was significantly higher than that in Holstein breed. The amount of telomeric DNA in males was significantly higher than that in females. Telomerase activity was up-regulated in most bovine tissues during fetal stage, but was down-regulated in most tissues at mature 18 month age except the testis cells. This study indicates that the amount of telomeres and telomerase activity of cells can be used as an age marker or/and a physiological marker of cattle.

Effects of Tumor Microenvironmental Factors on DNA Methylation and Radiation Sensitivity in A549 Human Lung Adenocarcinoma

  • Oh, Jung-Min;Kim, Young-Eun;Hong, Beom-Ju;Bok, Seoyeon;Jeon, Seong-Uk;Lee, Chan-Ju;Park, Dong-Young;Kim, Il Han;Kim, Hak Jae;Ahn, G-One
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.2
    • /
    • pp.66-74
    • /
    • 2018
  • Background: Tumor response to anticancer therapies can much be influenced by microenvironmental factors. In this study, we determined the effect of these microenvironmental factors on DNA methylation using A549 human lung adenocarcinoma cell line. Materials and Methods: We subjected A549 cells to various conditions mimicking tumor microenvironment including hypoxia, acidosis (sodium lactate), oxidative stress ($H_2O_2$), bystander effect (supernatant from doxorubicin (Dox)-treated or irradiated cells), and immune cell infiltration (supernatant from THP-1 or Jurkat T cells). Genomic DNA was isolated from these cells and analyzed for DNA methylation. Clonogenic cell survival, gene expression, and metabolism were analyzed in cells treated with some of these conditions. Results and Discussion: We found that DNA methylation level was significantly decreased in A549 cells treated with conditioned media from Dox-treated cells or Jurkat T cells, or sodium lactate, indicating an active transcription. To determine whether the decreased DNA methylation affects radiation sensitivity, we exposed cells to these conditions followed by 6 Gy irradiation and found that cell survival was significantly increased by sodium lactate while it was decreased by conditioned media from Dox-treated cells. We further observed that cells treated with conditioned media from Dox-treated cells exhibited significant changes in expression of genes including BAX and FAS (involved in apoptosis), NADPH dehydrogenase (mitochondria), EGFR (cellular survival) and RAD51 (DNA damage repair) while sodium lactate increased cellular metabolism rather than changing the gene expression. Conclusion: Our results suggest that various tumor microenvironmental factors can differentially influence DNA methylation and hence radiosensitivity and gene expression in A549 cancer cells.