• Title/Summary/Keyword: Cameras

Search Result 2,264, Processing Time 0.031 seconds

A Surveillance System Combining Model-based Multiple Person Tracking and Non-overlapping Cameras (모델기반 다중 사람추적과 다수의 비겹침 카메라를 결합한 감시시스템)

  • Lee Youn-Mi;Lee Kyoung-Mi
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.12 no.4
    • /
    • pp.241-253
    • /
    • 2006
  • In modem societies, a monitoring system is required to automatically detect and track persons from several cameras scattered in a wide area. Combining multiple cameras with non-overlapping views and a tracking technique, we propose a method that tracks automatically the target persons in one camera and transfers the tracking information to other networked cameras through a server. So the proposed method tracks thoroughly the target persons over the cameras. In this paper, we use a person model to detect and distinguish the corresponding person and to transfer the person's tracking information. A movement of the tracked persons is defined on FOV lines of the networked cameras. The tracked person has 6 statuses. The proposed system was experimented in several indoor scenario. We achieved 91.2% in an averaged tracking rate and 96% in an averaged status rate.

An Adaptive Switching Mechanism for Three-Dimensional Hybrid Cameras (하이브리드 입체 카메라의 적응적인 스위칭 메커니즘)

  • Jang, Seok-Woo;Choi, Hyun-Jun;Lee, Suk-Yun;Huh, Moon-Haeng
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1459-1466
    • /
    • 2013
  • Recently, various types of three-dimensional cameras have been used to analyze surrounding environments. In this paper, we suggest a mechanism of adaptively switching active and passive cameras of hybrid cameras, which can extract 3D image information more accurately. The suggested method first obtains brightness and texture features representing the environment from input images. It then adaptively selects active and passive cameras by generating rules that reflect the extracted features. In experimental results, we show that a hybrid 3D camera consisting of passive and active cameras is set up and the proposed method can effectively choose appropriate cameras in the hybrid camera and make it possible to extract three dimensional information more accurately.

Combined Static and Dynamic Platform Calibration for an Aerial Multi-Camera System

  • Cui, Hong-Xia;Liu, Jia-Qi;Su, Guo-Zhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2689-2708
    • /
    • 2016
  • Multi-camera systems which integrate two or more low-cost digital cameras are adopted to reach higher ground coverage and improve the base-height ratio in low altitude remote sensing. To guarantee accurate multi-camera integration, the geometric relationship among cameras must be determined through platform calibration techniques. This paper proposed a combined two-step platform calibration method. In the first step, the static platform calibration was conducted based on the stable relative orientation constraint and convergent conditions among cameras in static environments. In the second step, a dynamic platform self-calibration approach was proposed based on not only tie points but also straight lines in order to correct the small change of the relative relationship among cameras during dynamic flight. Experiments based on the proposed two-step platform calibration method were carried out with terrestrial and aerial images from a multi-camera system combined with four consumer-grade digital cameras onboard an unmanned aerial vehicle. The experimental results have shown that the proposed platform calibration approach is able to compensate the varied relative relationship during flight, acquiring the mosaicing accuracy of virtual images smaller than 0.5pixel. The proposed approach can be extended for calibrating other low-cost multi-camera system without rigorously mechanical structure.

Implementation of CCTV Safe Return Home Service considering Distance and Service Rate (거리 및 서비스율을 고려한 CCTV 안심귀가 서비스의 구현)

  • Lee, Keonbae
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1195-1202
    • /
    • 2019
  • The safe return home system automatically tracks and makes a video-recording the client by selecting and controlling CCTV cameras near the client using GPS location information received from the smart device possessed by the service client. This service helps clients to return home safely when there is a crime-ridden district on their late night return home route. If the CCTV cameras that can capture the client are already occupied and used by other clients, concession of occupied CCTV cameras is required to capture the new client. To tackle the limitation, we developed an extended method that considered both the average distances between the client and CCTV cameras and the service rates. As a result, the average distance between CCTV cameras and clients is kept close, and service rates are improved.

Post-earthquake building safety evaluation using consumer-grade surveillance cameras

  • Hsu, Ting Y.;Pham, Quang V.;Chao, Wei C.;Yang, Yuan S.
    • Smart Structures and Systems
    • /
    • v.25 no.5
    • /
    • pp.531-541
    • /
    • 2020
  • This paper demonstrates the possibility of evaluating the safety of a building right after an earthquake using consumer-grade surveillance cameras installed in the building. Two cameras are used in each story to extract the time history of interstory drift during the earthquake based on camera calibration, stereo triangulation, and image template matching techniques. The interstory drift of several markers on the rigid floor are used to estimate the motion of the geometric center using the least square approach, then the horizontal interstory drift of any location on the floor can be estimated. A shaking table collapse test of a steel building was conducted to verify the proposed approach. The results indicate that the accuracy of the interstory drift measured by the cameras is high enough to estimate the damage state of the building based on the fragility curve of the interstory drift ratio. On the other hand, the interstory drift measured by an accelerometer tends to underestimate the damage state when residual interstory drift occurs because the low frequency content of the displacement signal is eliminated when high-pass filtering is employed for baseline correction.

Effect Analysis on Red Light Camera for Signalized Intersection Safety -Focused on Side Right-Angle Collision Accidents- (신호교차로 안전성향상을 위한 단속카메라의 효과분석 연구 -측면직각 충돌사고를 중심으로-)

  • Oh, Ju Taek;Kim, Yong Seok;Lee, Yong Chul
    • International Journal of Highway Engineering
    • /
    • v.17 no.1
    • /
    • pp.119-127
    • /
    • 2015
  • PURPOSES : Before-and-after studies of red light cameras were conducted with the aim of reducing the number of side right-angle collisions. Three different methods were used for the before-and-after studies, and the analysis results were compared. METHODS : This research used the naive before-and-after method, the comparison-group method, and the empirical Bayes method to study the effects of red light cameras on side-angle collisions. The results of the three before-and-after methods were compared and interpreted in terms of safety indications at signalized intersections. RESULTS : The research results showed that side right-angle collisions can be reduced by installing red light cameras at signalized intersections. All three methods guarantee safety improvements of 25~30% on average. With regard to the results of each method, the naive before-and-after method, the comparison-group method, and the empirical Bayes method showed safety improvements of 25.6%, 27.8%, and 29.7%, respectively. CONCLUSIONS : It was concluded that red light cameras are an effective countermeasure to improve intersection safety. In particular, by installing red light cameras, side right-angle collisions can be reduced by up to approximately 25~30%.

Multiple Camera Collaboration Strategies for Dynamic Object Association

  • Cho, Shung-Han;Nam, Yun-Young;Hong, Sang-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.6
    • /
    • pp.1169-1193
    • /
    • 2010
  • In this paper, we present and compare two different multiple camera collaboration strategies to reduce false association in finding the correspondence of objects. Collaboration matrices are defined with the required minimum separation for an effective collaboration because homographic lines for objects association are ineffective with the insufficient separation. The first strategy uses the collaboration matrices to select the best pair out of many cameras having the maximum separation to efficiently collaborate on the object association. The association information in selected cameras is propagated to unselected cameras by the global information constructed from the associated targets. While the first strategy requires the long operation time to achieve the high association rate due to the limited view by the best pair, it reduces the computational cost using homographic lines. The second strategy initiates the collaboration process of objects association for all the pairing cases of cameras regardless of the separation. In each collaboration process, only crossed targets by a transformed homographic line from the other collaborating camera generate homographic lines. While the repetitive association processes improve the association performance, the transformation processes of homographic lines increase exponentially. The proposed methods are evaluated with real video sequences and compared in terms of the computational cost and the association performance. The simulation results demonstrate that the proposed methods effectively reduce the false association rate as compared with basic pair-wise collaboration.

A Parallel Implementation of Multiple Non-overlapping Cameras for Robot Pose Estimation

  • Ragab, Mohammad Ehab;Elkabbany, Ghada Farouk
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.4103-4117
    • /
    • 2014
  • Image processing and computer vision algorithms are gaining larger concern in a variety of application areas such as robotics and man-machine interaction. Vision allows the development of flexible, intelligent, and less intrusive approaches than most of the other sensor systems. In this work, we determine the location and orientation of a mobile robot which is crucial for performing its tasks. In order to be able to operate in real time there is a need to speed up different vision routines. Therefore, we present and evaluate a method for introducing parallelism into the multiple non-overlapping camera pose estimation algorithm proposed in [1]. In this algorithm the problem has been solved in real time using multiple non-overlapping cameras and the Extended Kalman Filter (EKF). Four cameras arranged in two back-to-back pairs are put on the platform of a moving robot. An important benefit of using multiple cameras for robot pose estimation is the capability of resolving vision uncertainties such as the bas-relief ambiguity. The proposed method is based on algorithmic skeletons for low, medium and high levels of parallelization. The analysis shows that the use of a multiprocessor system enhances the system performance by about 87%. In addition, the proposed design is scalable, which is necaccery in this application where the number of features changes repeatedly.

Sector Based Multiple Camera Collaboration for Active Tracking Applications

  • Hong, Sangjin;Kim, Kyungrog;Moon, Nammee
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1299-1319
    • /
    • 2017
  • This paper presents a scalable multiple camera collaboration strategy for active tracking applications in large areas. The proposed approach is based on distributed mechanism but emulates the master-slave mechanism. The master and slave cameras are not designated but adaptively determined depending on the object dynamic and density distribution. Moreover, the number of cameras emulating the master is not fixed. The collaboration among the cameras utilizes global and local sectors in which the visual correspondences among different cameras are determined. The proposed method combines the local information to construct the global information for emulating the master-slave operations. Based on the global information, the load balancing of active tracking operations is performed to maximize active tracking coverage of the highly dynamic objects. The dynamics of all objects visible in the local camera views are estimated for effective coverage scheduling of the cameras. The active tracking synchronization timing information is chosen to maximize the overall monitoring time for general surveillance operations while minimizing the active tracking miss. The real-time simulation result demonstrates the effectiveness of the proposed method.

Useful Image Back-projection Properties in Cameras under Planar and Vertical Motion (평면 및 수직 운동하는 카메라에서 유용한 영상 역투영 속성들)

  • Kim, Minhwan;Byun, Sungmin
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.7
    • /
    • pp.912-921
    • /
    • 2022
  • Autonomous vehicles equipped with cameras, such as robots, fork lifts, or cars, can be found frequently in industry sites or usual life. Those cameras show planar motion because the vehicles usually move on a plane. Sometimes the cameras in fork lifts moves vertically. The cameras under planar and vertical motion provides useful properties for horizontal or vertical lines that can be found easily and frequently in our daily life. In this paper, some useful back-projection properties are suggested, which can be applied to horizontal or vertical line images captured by a camera under planar and vertical motion. The line images are back-projected onto a virtual plane that is parallel to the planar motion plane and has the same orientation at the camera coordinate system regardless of camera motion. The back-projected lines on the virtual plane provide useful information for the world lines corresponding to the back-projected lines, such as line direction, angle between two horizontal lines, length ratio of two horizontal lines, and vertical line direction. Through experiments with simple plane polygons, we found that the back-projection properties were useful for estimating correctly the direction and the angle for horizontal and vertical lines.