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Abstract 
 

In this paper, we present and compare two different multiple camera collaboration strategies to 
reduce false association in finding the correspondence of objects. Collaboration matrices are 
defined with the required minimum separation for an effective collaboration because 
homographic lines for objects association are ineffective with the insufficient separation. The 
first strategy uses the collaboration matrices to select the best pair out of many cameras having 
the maximum separation to efficiently collaborate on the object association. The association 
information in selected cameras is propagated to unselected cameras by the global information 
constructed from the associated targets. While the first strategy requires the long operation 
time to achieve the high association rate due to the limited view by the best pair, it reduces the 
computational cost using homographic lines. The second strategy initiates the collaboration 
process of objects association for all the pairing cases of cameras regardless of the separation. 
In each collaboration process, only crossed targets by a transformed homographic line from 
the other collaborating camera generate homographic lines. While the repetitive association 
processes improve the association performance, the transformation processes of homographic 
lines increase exponentially. The proposed methods are evaluated with real video sequences 
and compared in terms of the computational cost and the association performance. The 
simulation results demonstrate that the proposed methods effectively reduce the false 
association rate as compared with basic pair-wise collaboration. 
 
 
Keywords: Object detection, object association, homographic line, multiple cameras, 
collaboration 
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1. Introduction 

Recently, multiple cameras based surveillance system has received much attention to cover 
larger areas with possibly overlapped views of multiple cameras. The redundant view by 
multiple cameras can improve objects detection and tracking by minimizing the effect on the 
system caused by false or failed detection and occlusion [1][2]. One of the key requirements in 
multiple cameras based system is to have the consistent view of objects among different 
cameras as maintaining the redundant information consistently and robustly. Especially, when 
multiple cameras flexibly change their views for a large scale surveillance system, it is critical 
to minimize falsely associated objects as ensuring a high association rate. Once the 
inconsistent information by the false association is generated in the system, it may be 
propagated in time and it is difficult to be corrected. Therefore, minimizing the false 
association through multiple camera collaboration for the object association has become an 
important issue in the large scale surveillance system. 

There are numerous association approaches using feature matching or the geometry of 
multiple cameras to find the correspondence of objects among multiple cameras 
[3][4][5][6][7][8][9][10][11][12][13][14][15][16]. Feature based approaches usually suffer 
from the unavailability of distinctive features for all objects [3][4][5][6][7][8], and more over 
are sensitive to detection performance. On the other hand, geometry based approaches require 
the accurate calibration process to construct the relationship among cameras [9][10][11]. 
Some methods combine both approaches to find the correspondence of objects [12][13]. 
However, feature based approaches have a higher chance to generate the false association due 
to the sensitivity to detection performance. In geometry based approaches, the boundaries of 
camera views on the ground plane are used as stationary homographic lines in other cameras to 
associate targets when they cross the corresponding boundaries of camera views [14][15]. The 
boundary information of camera views is predetermined in advance or determined by 
observing the motion of objects. However, the association process is limited by stationary 
objects which do not cross the boundaries of camera views. Moreover, the determination 
process of the boundary information makes the system difficult to promptly support the 
flexible movements of cameras.  

In order to dynamically establish the association for objects, Kyong et al. [16] present an 
association method that homographic lines are locally generated on targets in each camera and 
they are projected to among the other cameras. Since it is not necessary to have a ground plane 
as a common reference plane, all the cameras do not need to see the ground plane. 
Homographic lines are generated when the degree of separation between them is satisfied. The 
required minimum separation between each pair of cameras is predetermined by incorporating 
the effect of targets height uncertainty and frame synchronization errors because the reference 
plane may not be the same as the actual height of targets. The method can be extended to 
support multiple cameras through pair-wise collaboration for the object association and 
combine the association information from each pair of collaborating cameras. While the 
pair-wise collaboration is effective for objects with the enough separation, the association is 
not well-established for objects without the enough separation and it may generate the false 
association. Therefore, an effective camera collaboration is necessary to reduce inconsistent 
and uncertain information.  

In this paper, we extend the locally initiating homographic lines based association method 
to two different multiple camera collaboration strategies that reduce the false association. 
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Collaboration matrices are defined with the elements of the required minimum separation 
presented in [16]. The first strategy compares the collaboration matrices with the minimum 
separation of objects for each pair of cameras and selects the best pair out of many cameras 
satisfying the required minimum separation. After targets are associated in selected cameras, 
the association information is propagated to unselected cameras by transforming the global 
information constructed from the associated targets. The selection based strategy efficiently 
collaborates on the object association with the best pair of the cameras as reducing the false 
association. However, it requires the long operation time to increase the association rate due to 
unsatisfied separation when a large number of targets are detected. In order to shorten the 
operation time for the high association rate, the second strategy initiates the collaboration for 
all the pairing cases of cameras regardless of the separation. When each pair of cameras 
collaborates on object association, a homographic line is generated on each target and it is 
projected to the other collaborating camera. The other camera generates homographic lines on 
only the crossed targets by the projected homographic lines and they are re-projected to the 
one camera. This association process is iteratively operated for all the unassociated targets in 
all the pairing cases of cameras. The proposed methods are evaluated with real video 
sequences and they are compared with the basic pair-wise collaboration to demonstrate the 
effective and efficient association. 

The remainder of this paper has 4 sections. In Section 2, we present the overview of 
homographic lines based association method and describe the association problem in terms of 
the false association and the computational costs. Section 3 investigates two collaboration 
strategies for objects association to minimize the inconsistency in the system and to improve 
the efficiency of using homographic lines. In Section 4, we verify the proposed methods with 
the real video sequences. Finally, our contribution is summarized in Section 5. 

2. Background and Problem Description 

2.1 Background 
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Fig. 1. Illustration of the homographic lines based association method 
 
The locally generated homographic lines based association method is used to collaboratively 
associate targets among multiple cameras. Fig. 1 illustrates the homographic lines based 
association method where two cameras are used to associate objects [16]. A homographic line 
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k
iL is generated on k

iT , a detected target of object i , in each camera kC . Each of these 

homographic lines is transformed to a global plane and projected to the other camera. k
iGL  

denotes a transformed homographic line on a global plane and k
iSL  denotes a projected 

homographic line from k
iGL  on the other camera lC . The association between targets is 

established if a transformed homographic line intersects with a corresponding target 
distinctively. Table 1 illustrates the information of crossed targets for Fig. 1. For example, 1

1T  
is crossed by a projected homographic line generated from 2

1T  and 2
1T  is crossed by a 

projected homographic line generated from 1
1T . Thus, targets },{ 2

1
1

1 TT  and },{ 2
2

1
2 TT  are 

found as the correspondence of targets respectively. 
 

Table 1. Crossed targets by homographic lines for Fig. 1 
 Crossed targets in 1C  Crossed targets in 2C  
1

1T  - { 2
1T } 

1
2T  - { 2

2T } 
2

1T  { 1
1T } - 

2
2T  { 1

2T } - 

2.2 Problem Description and Approach 

 
Fig. 2. Illustration of an unsuccessful association of targets due to insufficient separation in a non-ideal 

situation, and its propagation creating the inconsistent information by a false association (the frame 
difference between the first frames (top) and the second frames (bottom) is 9 frames) 

 
The successful objects association depends on the separation between homographic lines on 
the other cameras. When the sufficient separation between homographic lines is not 
guaranteed, homographic lines can cross multiple targets and the intersections with multiple 
targets can create ambiguity in determining the correspondence of objects. Moreover, 
detection uncertainty as well as lack of common reference may create uncertainty in deciding 
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the intersections. In order to guarantee the correct intersections of homographic lines with 
corresponding targets, a tolerance circle, mins , is defined for each target by considering the 
effect of targets height uncertainty, frame synchronization errors and detection uncertainty. In 
Fig. 2, a white circle around each target denotes its tolerance circle, a red rectangle an 
associated target and a white rectangle an unassociated target. Because the required separation 
for objects association increases, the association performance is affected by the tolerance 
circle of targets. Due to the insufficient separation in the first frames, homographic lines are 
not generated in camera 1C  and targets remain unassociated with corresponding targets in the 
other cameras. 

When many cameras (i.e. more than two cameras) are involved in the object association, the 
locally generated homographic lines based association method can be extended to support 
them through pair-wise collaboration. However, each pair of collaborating cameras may 
contradict the object association due to the insufficient separation. It may generate false 
associations and create the inconsistent information of uncertain association in the system. 
They are also propagated in time and continuously degrade the association performance. 
Although only one object is not associated in one instant, it affects the overall performance of 
object association in time. For example, in Fig. 2, targets are unassociated during 9 frames and 
they create a false association between targets 1

1T  and 2
2T  in the second frames. The system 

keeps the inconsistent information of the falsely associated targets until they leave the 
surveillance region. Moreover, when multiple cameras collaborate on objects association 
without the sufficient separation between targets, homographic lines are unnecessarily 
generated on targets and projected to the other cameras without establishing objects 
association. The association failure due to the insufficient separation wastes the computational 
costs of transforming homographic lines. In a distributed camera network, minimizing data to 
be transferred is also very important to efficiently exchange data between the camera systems 
without any data loss or latency. It also increases the frame rate achieved by the system and 
improves the performance of algorithms. In general, each target requires transformation of a 
local homographic line to a global homographic line or transformation of a global 
homographic line to a local homographic line. The number of the intersection tests is 
proportional to the multiplication of the number of targets and the number of transformed 
homographic lines. It is assumed that a pair-wise association is utilized when more than two 
cameras are used. Then, the computational costs for using homographic lines are represented 
by the number of transformations and intersection tests, TC  and CC , respectively 

),1(2

),1(22
2 −×=

−×=

KIC
KIC

C

T
     (1) 

where I  denotes the number of detected targets in K cameras. Fig. 3 shows the computational 
costs for using homographic lines according to the number of targets and the number of 
cameras. The number of the transformation increases linearly to the number of targets and the 
number of intersection tests increases exponentially to the number of targets. It also 
exponentially increases the amount of exchanged data for target information on the network. 
As the performance of object association is improved, the number of targets to be associated is 
decreased at one time. Eventually, it decreases the amount of the exchanged data in the long 
term. Thus, a proper collaboration camera strategy is necessary to efficiently associate targets 
among different cameras as minimizing the inconsistent and uncertain information. 



1174                                                       Cho et al.: Multiple Camera Collaboration Strategies for Dynamic Object Association 

CT with 2 Cameras
CC with 2 Cameras
CT + CC with 2 Cameras
CT with 3 Cameras
CC with 3 Cameras
CT + CC with 3 Cameras
CT with 4 Cameras
CC with 4 Cameras
CT + CC with 4 Cameras

The number of targets

The num
ber of transform

 
 

intersection tests

1 2 3 4 5 6
0

50

100

150

200

250

300

 

 

 
Fig. 3. Illustration of the computational costs for using homographic lines according to the number of 

targets and cameras 
 

We consider two effective collaboration strategies to reduce false associations as well as to 
improve the efficiency of using homographic lines. Collaboration matrices are defined to 
indicate the feasibility of successful association between any two cameras. The elements in the 
collaboration matrices represent the required minimum separation obtained by incorporating 
the effect of targets height uncertainty, frame synchronization errors and detection uncertainty. 
The first strategy uses the collaboration matrices to select the best pair out of many cameras by 
using the degree of separation between homographic lines. After targets in the selected 
cameras are associated, the association information is propagated to unselected cameras by 
transforming the global information constructed from the associated targets.  

However, when a large number of objects is detected, the selected cameras cannot cover all 
the targets and the required minimum separation is hardly satisfied due to overlapped and 
occluded targets. The second strategy initiates the collaboration process of objects association 
for all the pairing cases of cameras regardless of the separation. In each pair of cameras, a 
homographic line is generated on each target and it is projected to the camera. Then, the other 
collaborating camera generates homographic lines on only the intersected targets with the 
projected homographic lines and they are re-projected to the one camera. Since the system 
tests the association for each target at a time, it minimizes association ambiguity caused by 
homographic lines generated from all the targets. This association process is iteratively 
operated for all the unassociated targets in all the pairing cases of cameras. 

3. Multiple Camera Collaboration 

3.1 Collaboration Matrices and Characterization 
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Fig. 4. The required separation of homographic lines to be effective for objects association in the other 

collaborating camera with the known reference plane such as a ground plane 
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Two collaborating cameras participate in an association process by generating a homographic 
line on each target in each camera. The homographic line is transformed to a global reference 
plane such as a ground plane and its transformed homographic line is projected to the other 
collaborating camera. While the system knows each target that generates its homographic line 
in a local camera, its corresponding target in the other collaborating camera is determined by 
the intersection with its projected homographic line. The association of the corresponding 
targets is established when a projected homographic lines intersects a corresponding target in 
each camera. However, the association is not established if a projected homographic line 
intersects multiple targets in each camera.  Thus, the separation of projected homographic 
lines is a key parameter determining the successful association and the size of a target 
determines the required separation of projected homographic lines. For example, homographic 
lines are generated on each target in camera 1C in Fig. 4 and the distance between projected 
homographic lines is denoted by d in camera 2C . In order for projected homographic lines 

1
1SL  and 1

2SL to be effective in camera 2C , the separation of them should be greater than the 
twice size of targets to be associated. We denote the required minimum separation of 
homographic lines as a threshold and it is represented by thd . Since the threshold can be used 
to indicate the effectiveness of projected homographic lines, the determination of an 
appropriate threshold is critical in homographic lines based association. 

The critical issue in determining the threshold is that the separation of projected 
homographic lines depends on the location and the orientation of cameras. Also, if cameras are 
flexibly titling and panning, the threshold should incorporate the effect of tilting and panning 
on the separation. When all the possible variations for a camera configuration are considered, 
the threshold needs to be determined for each case of a camera configuration. Since it is not 
trivial to construct all the thresholds according to all the camera configurations, we consider 
only the worst effect among them on the separation. The threshold is determined for each pair 
of cameras by measuring the maximum size of targets and the threshold matrix with the 
threshold for each pair of cameras is represented by 

1,1 1,2

2,2 2,2
th th

th th th

d d
d d
 
 =  
  





  

D , 

where its size is K×K and lk
thd ,  denotes the threshold between camera kC and lC . A 

negative value indicates that the threshold is always satisfied in a local camera because a 
system knows which targets generate homographic lines. 
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Fig. 5. The required separation of homographic lines to be effective for objects association in the other 
collaborating camera with the unknown heights of objects and the frame synchronization errors between 

cameras 
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There are two additional factors influencing the threshold which increases the size of a 
target. One is the unknown heights of objects and another is the frame synchronization errors 
between cameras in a real situation. The dotted circle of targets represents the tolerance circle 
incorporating the effect of them as shown in Fig. 5. Due to the effect of the additional factors, 
d is increased and may be smaller than thd  in the figure. The size of the tolerance circle is 
determined by measuring the amount of pixels that can be deviated from a corresponding 
target by the additional factors.  

For the unknown heights of objects, the size of a tolerance circle is defined by 
                                                           , , ,max( , )k k k

min i b i h is r σ= ,                                (2) 

where ,
k

b ir  denotes the original size of a target and ,
k
h iσ  denotes the possible number of 

deviated pixels from the centroid of a target by mismatched height of a target in camera kC . 

,
k
h iσ  depends on camera configurations (locations, tilting angles and panning angles) 

generating homographic lines. Then, ,
k
h iσ  is represented by 

                                                           ,
, ,max ( )k k l

h i l k h iσ σ≠ ′= ,                                (3) 

where ,
,
k l

h iσ ′  denotes the maximum number of deviated pixels from the centroid of a target 

when homographic lines are generated from camera lC  to kC  with possible camera 
configurations. We use the reference plane with the average height of targets to transform and 
project homographic lines to a different camera since the actual heights of targets are unknown. 
When a homographic line is transformed to the reference plane and its transformed 
homographic line is projected to a different camera, a projected homographic line is deviated 
from the point of a target with the actual height. In order to measure the amount of pixels to 
include the deviation by the height uncertainty, it is assumed that only the height range of 
targets is given to the system. The amount of pixels is measured by comparing a projected 
homographic line using the average height with a projected homographic line using the 
maximum or the minimum height because the heights of targets are unknown. 
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Fig. 6. Illustration of the effect of height uncertainty between cameras 1C  and 2C  according to the 

distance to an object 
 

Each value of ,
,
k l

h iσ ′  between cameras kC  and lC  is determined by finding the maximum 
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effect of the given amount of height uncertainty according to object locations. Fig. 6 shows an 
example how many pixels are deviated from an original point between cameras 1C  placed at 
(x=3m ,y=0m, z=3m) and 2C  placed at (x=6m, y=3m, z=3m). In order to measure the number 
of deviated pixels, two homographic lines are generated from camera 2C  to camera 1C  
according to an object's location. One homographic lines is generated with an actual height 
and the other is generated with an average height different from the actual height by 0.1m. The 
number of deviated pixels is maximized when an object is close to a camera onto which 
homographic lines are transformed. The simulation to measure the amount of pixels is 
repeated for different camera configurations and the maximum value among them is selected. 
Fig. 7 illustrates the amount of pixels with other cameras incorporating the effect of height 
uncertainty (0.1m ∼ 0.4m) where ,

,
k l

h iσ ′  denotes the amount of pixels.  They are proportional to 
the amount of height uncertainty. 
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Fig. 7. Illustration of the number of pixels required to compensate for the effect of height uncertainty in 

camera 1C placed at ( x =3m, y =0m, z =3m) with other cameras (image size: 704×480) 
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Fig. 8. Illustration of an association problem by frame synchronization errors between cameras (solid 
circles indicate the targets detected by camera 1C  and dotted circles the targets detected by camera 

2C with frame synchronization errors) 
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Another factor that influences the size of the tolerance circle is frame synchronization errors 
between cameras. It also causes the deviation of a projected homographic line because targets 
can be different locations due to differently captured time. It is assumed that the differently 
captured time of cameras is within at most 1 frame. Fig. 8 shows the example of the frame 
synchronization errors. Solid circles and dotted circles represent two different locations where 
objects are detected by cameras. Object 2O  cannot be associated because 1

2SL  does not 
intersect with 2

2T . In order to incorporate frame synchronization errors, the radius of a 
tolerance circle needs to be adjusted by 
                                                           , , ,max( , )k k k

min i b i s is r σ= ,                                (4) 

where ,
k
s iσ  denotes the possible number of deviated pixels from the centroid of a target by the 

synchronization issue between cameras in camera kC . The synchronization effect depends on 
the sampling period of a camera FT  and the direction toward which an object moves. Then, 

,
k
s iσ  is obtained by 

                                                           ,
, ,max ( )k k l

s i l k s iσ σ≠ ′= ,                                (5) 

where ,
,
k l

s iσ ′  the maximum number of deviated pixels from the centroid of a target by the 

synchronization issue between cameras kC  and lC . Since the effect is maximized when the 
optical axes of two cameras are perpendicular to each other, only the paired cases of 
perpendicular cameras is considered. 
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Fig. 9. The simulated effect of frame synchronization errors between cameras 

 
Fig. 9 shows the amount of pixels to incorporate the effect of frame synchronization errors 

where ,
,
k l

s iσ ′  denotes the amount of pixels. It is noted that the deviation of a projected 
homographic line is related to the relative speed of an object per each frame, not the absolute 
speed of an object. When the deviation of a projected homographic line is estimated by the 
simulation, the speed of an object is set to 2m/sec. Since the frame rate varies from 0.05sec to 
0.2sec in the simulation, it has the same effect of having the relative speed of an object, 
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0.1m/frame to 0.4m/frame. Since the frame synchronization errors are maximized with 
perpendicularly placed cameras, a homographic line is generated from the delayed image of 

1C  to the image of 2C . The maximum pixel distance error between a projected homographic 
line and a corresponding target in camera 2C  is measured. As the sampling rate increases, the 
amount of pixels decreases. 

When the effects of the additional factors are considered at the same time, they can 
compensate for each other. For example, when a homographic line is generated from the 
deviated position of a target by detection algorithm, a transformed homographic line with an 
average height of a target can be accidentally shifted to the position with an actual height of a 
target. A similar effect can also occur with synchronization issues. However, the system 
cannot predict the compensation effect by non-ideal parameters. Thus, the size of a tolerance 
circle should consider the worst effect by 
                                                           , , , ,max( , ).k k k k

min i b i h i s is r σ σ= +                   (6) 
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Fig. 10. Illustration of the number of deviated pixels by (6) 

 
Fig. 10 illustrates mins  for cameras 1C  and 2C  in terms of the number of required pixels by 

(6) assuming that the height uncertainty is set to be 0.1m. If the effect of detection performance 
is considered, the values are expected to be increased. While expanded radii of association 
circles guarantee that targets are crossed by corresponding transformed homographic lines, 
they can degenerate association performance because homographic lines generation can be 
ineffective due to insufficient separations of targets. A threshold indicating effectiveness of 
homographic lines can be represented by radii of association circles. A threshold k

thd  in 

camera kC  is defined as 
                                                           , , ,min ( )k k k

th i j min i min jd arg s s= + ,                 (7) 

where i, j denote indices of neighboring targets. The smallest sum of the sizes of two 
neighboring tolerance circles indicates effectiveness of homographic lines in an association 
process in camera kC . 
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3.2 Camera Selection Based Approach 
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Fig. 11. Illustration of grouping targets by using the local tracking and association information 

 
A camera selection based approach is to select the best pair out of many cameras to increase 
the effectiveness of projected homographic lines. Since the effectiveness of projected 
homographic lines depends on the threshold in the other collaborating camera, a system tests 
the separation of homographic lines for each pair of cameras. Each camera determines the 
shortest distance between neighboring homographic lines to be tested for the effectiveness in 
the other collaborating camera. If the transformed shortest distance has enough separation in 
the other collaborating camera, the separations of other homographic lines are also satisfied 
since the transformation of a homographic line is a linear process.  

In order to reduce the dependence of the shortest distance on the separation of targets, 
targets are grouped into two types as shown in Fig. 11. Type I is a newly detected target and 
Type II is a locally tracked target having the association. Each of the shortest distances is 
determined for each type of targets. If they are not grouped, the shortest between targets in 
camera 1C  is the distance between targets 1

1T  and 1
2T otherwise, the distance increases to the 

distance between targets 1
1T  and 1

4T  for Type I targets. kG  denotes a set of Type I targets and 
kG~  denotes a set of Type II targets in camera kC . Then, sets for the targets are represented 

by, 
1 1 1 1 1 1

1 4 2 3

2 2 2 2 2 2
1 4 2 3

{ , }, { , },

{ , }, { , }.

G T T G T T

G T T G T T

= =

= =




 

The association processes are operated on sets of equivalent types by using the homographic 
line based association.  

1,2 1 2 1,2 1 2( , ), ( , ),H G G H G G   

where function ,m nH  is the homographic line based association for Type I targets between 
camera mC  and nC  and function ,m nH  for Type II targets. H  and H~  are equivalent but the 
type of targets are different. The target grouping also decreases the number of intersection 
tests by projected homographic lines. When the targets are not grouped in this example, 

CT CC +  is 16 + 32 = 48. Otherwise, CC  decreases to 16 with grouped targets and CT CC +  
becomes 32. 
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Fig. 12. Illustration of the camera selection strategy in multiple cameras (red homographic lines 

from 1C , blue homographic lines from 2C , and green homographic lines from 3C ) 
 

When the shortest distance between neighboring homographic lines is determined in each 
camera, it is represented as a starting point and an ending point to be projected to the other 
cameras. It is assumed that an image has the top left origin. The x-coordinates of the starting 
point and the ending point are the same as the x-coordinates of the targets respectively and the 
y-coordinates are set to be the greater of y-coordinates of targets. The reason for selecting the 
greater of the two y-coordinates is that a closer line to a camera has a shorter length when it is 
transformed and the shorter one should be tested for the separation in the other cameras. For 
example, the coordinates of two targets are (482, 323) and (363, 289) in camera 1C  of Fig. 
12. The shortest distance between them consists of two points (363, 482) and (482, 323). 

k
jid , denotes the length of the shortest line between neighboring targets k

iT  and k
jT , and lk

jid ,
,  

denotes the transformed length of k
jid ,  at camera lC . The length of the shortest line for each 

pair of cameras can be represented by a matrix with the size of K×K for convenience. In this 
example, the distance matrix D is obtained by 

119 32.177 112.8608
48.2162 153 19.7655
59.1755 16.9171 121

 
 =  
  

D . 

The distance values on diagonals of this matrix are the pixel distance of two targets in each 
local camera and others are projected pixel distances in the other cameras. If only one object is 
detected by a camera, distance is ∞.  Since this matrix is determined by the coordinates of 
targets, it is updated every frame. 

The threshold matrix thD  for Fig. 12 is obtained by using the simulated data from Fig. 7 
and Fig. 9 

1 74.46 87.23
76.61 1 64.27
82.70 74.46 1

th

− 
 = − 
 − 

D , 
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where the height error is set to 0.1m and the frame rate is set to 8frames/sec. When D  and thD  

are compared, a pair of 1C  and 3C is possibly selected to cooperate for objects association. If 
multiple choices are possible, a pair of cameras having the maximum difference between D  
and thD  can be chosen.  

Targets in unselected cameras are associated by global information constructed by the 
associated targets in selected cameras. When targets are associated in two selected cameras, 
the system constructs global information such as height and position. Fig. 13 illustrates an 
association information update by selected cameras. When homographic lines generated with 
the known height from associated targets are transformed to other unselected cameras, they 
should intersect at near another corresponding target. ( , )k m n

i jg T T
 denotes an intersection 

point of homographic lines on camera kC
~

 from associated targets m
iT  and n

jT  where 

{ },m n K∈ . If several unassociated targets exist in unselected cameras, a target having the 

minimum distance to the transformed point is associated with { , }m n
i jT T . Then, index i~  of 

unassociated targets to be associated with them is determined by, 
 

arg min ( ( , ), ),k m n k
i j ii

D g T T T 


    (8) 

where ),( baD  returns the distance between points a  and b . This may falsely associate 
targets when they are occluded by each other. Hence, if an intersection point is within the 
tolerance circle of more than two targets, association information is not updated to prevent 
from false association. Even with these strategies, false association is still possible when 
targets are occluded each other. However, their association can be confirmed after they are 
separated enough for the association. For the computational costs, this process requires one 
global to local transformation and the intersection tests by the number of targets in (8). The 
first strategy by the camera selection based approach is summarized in Algorithm 1. 
 

O1

O2T1
1

T2
1

T1
2

C1

C2
T2

2

C3 g3(T1
1 ,T1)2

T2
3 T1

3

 
Fig. 13. Illustration of an association information update in unselected cameras by using global 

information. 
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Algorithm 1: Camera selection based approach 

Input : Detected targets at each camera kC , threshold matrix thD  
Output : Associated targets  
repeat  

Classify targets into Type I and Type II targets by local tracking information in each camera kC  
Construct distance matrix D  with the minimum distance between targets in each camera kC  
Select the pair of the best cameras {( , ) | , }m nC C m n k= ∈pC based on D  and thD  

for pC∈kC  do 

for all k
iT  do  

if k
iT  is Type I target then  

Generate a vertical homographic line and transform it to other selected camera 
end  

end  
end 
Find associated targets in two selected cameras with homographic lines and mins  

    Append association information into associated objects list A 
for A ∈A do 

for k
pC ∉C  do  

for all k
iT  do  

if k
iT  is Type I target then  

Two homographic lines from A  are transformed onto kC  and check association 
with          

mins by (8) 
end 

end  
end  

end 
until System stops 

3.3 Iteration Based Approach  
The association performance of the camera selection based method is ineffective due to a large 
number of targets. Any elements of matrix D  may not be satisfied with the threshold matrix 

thD . A distance matrix D  for Fig. 14 is obtained by 
 

4 0.56 2.63
6.08 16 6.61

16.77 6.07 34

 
 =  
  

D . 

 
The figure shows the ineffectiveness of homographic lines for associating targets when any 
pairs of cameras do not satisfy the threshold matrix thD . Thus, the system needs to wait until 
thresholds are satisfied. This may cause undetermined delay for the association process. 
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Fig. 14. Illustration of a case in which any pairs of cameras do not satisfy thresholds (red homographic 

lines from 1C , blue homographic lines from 2C , and green homographic lines from 3C ) 
 

Moreover, the camera selection based method does not always provide a correct decision in 
selecting cameras because the average height of targets is used to transform and project a 
horizontal line to other cameras. Also, since projected homographic lines are not parallel in 
other cameras, the association process is not always successful. These limitations waste 
projected homographic lines without establishing objects association.  For example, although 
cameras 2C  and 3C  are selected by the satisfied threshold in Fig. 15, any targets are not 
associated due to the insufficient separation. Another limitation of the camera selection based 
method is that some pairs of cameras having possible objects association are disregarded. 
 

 
Fig. 15. A limitation of camera selection strategy when cameras 2C  and 3C  are selected for objects 
association (blue homographic lines from 2C , green homographic lines from 3C and red retangulars 

indicate that targets are associated in the previous frame) 
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Fig. 16. The illustration of an iteration based strategy 

 
Table 2. Crossed targets by homographic lines for Fig. 16 

 Crossed targets in 1C  Crossed targets in 2C  
1

2T  - { 2
4

2
2 ,TT } 

2
2T  { 1

2T } - 
2

4T  { 1
4

1
3

1
1 ,, TTT } - 
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In order to remedy the limitations of the camera selection based method, a system initiates 
the collaboration process of objects association for all the pairing cases of cameras regardless 
of the separation. Similarly to the camera selection based approach, the targets in each camera 
are grouped by the two types defined in the previous section to minimize the unnecessary 
association process for the different types of targets. When each pair of cameras is operated for 
objects association, a homographic line is generated on each target at a time and it is 
transformed to the other collaborating camera. A homographic line can be generated in any 
order of targets such as the left to the right on image. After a homographic line is transformed 
to the other collaborating camera, all the crossed targets by the transformed homographic line 
generate homographic lines. The association is established for only the targets generating 
homographic lines. Fig. 16 illustrates an example of a homographic line generation on one 
target for two cameras. Camera 1C  generates a homographic line on only target 1

2T  first. Its 

homographic line is projected to camera 2C  and camera 2C generates each homographic line 
on the intersected targets 2

4T  and 2
2T . Since only the two of the four targets participate in an 

association process for target 1
2T , it has a higher chance that the projected homographic lines 

have the sufficient separation in camera 1C . Table 2 illustrates the crossed targets by 
homographic lines of an iteration based strategy for Fig. 16. As a result, targets 1

2T  and 2
2T  

are associated. This process is repeated for each target in each pair of collaborating cameras. 
The second strategy by the iteration based approach is summarized in Algorithm 2. 

Unassociated targets by the camera selected based approach in Fig. 15 are associated by the 
iterative association approach in Fig. 17. Since three cameras are used, six iterated association 
cases exist ( 1C  to 2C , 1C  to 3C , 2C  to 3C , and vice versa). One additional association for 
targets is established in Fig. 17-(b). Although the iterative association approach has an 
advantage to check every association case, the computational costs of the transformation and 
the intersection test are much higher than those of the camera selection based association. 
 
Algorithm 2: Iteration based approach 

Input : Detected targets at each camera kC  
Output : Associated targets  
repeat  

Classify targets into Type I and Type II targets by local tracking information in each camera kC  
Construct all the possible pairing cases {( , ) | , }m nC C m n k= ∈pC  

for pC∈pC  do 

for pC∈kC  do  

for all k
iT  do  

if k
iT  is Type I target then  

Generate a vertical homographic line and transform it to the other collaborating camera 
Check association with mins  and newly initiated homographic lines 

if single Type I target in the collaborating camera is associated with k
iT  then 

Append association information into associated objects list A 
end 

end  
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end  
end  

end 
for A ∈A do 

for all kC  do  
for all k

iT  do  

if k
iT  is Type I target then  

Two homographic lines from A  are transformed onto kC and check association with  

mins by (8) 
end 

end  
end  

end 
until System stops 
 

 
(a) association between cameras 1C  and 2C  

 
(b) association between cameras 1C  and 3C  

 
(c) association between cameras 2C  and 3C  

Fig. 17. Illustration of the multiple objects association by the iterative association approach (red 
homographic lines from 1C , blue homographic lines from 2C , green homographic lines from 3C  and 

red retangulars indicate that targets are associated in the previous frame) 
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4. Simulation and Analysis 

4.1 Simulation Setup 
Fig. 18 illustrates a simulation setup with six objects and three cameras for analyzing the 
association performance and the computational costs of the transformation and the intersection 
tests. We also compare the proposed methods with basic pair-wise collaboration extended 
from [16] to prove the improvement on the false association rate. Because the basic pair-wise 
approach initiates the association process for each pair of participating cameras, three different 
pairs of cameras execute the association process redundantly. In order to compare the 
performance between the methods, we measure three different rates such as successful 
association rate, failed association rate, and false association rate to check the inconsistency. 
Camera C1 is placed at (x = 3.65m,y = 0m,z = 2.37m) with tilting angle 82.3°and panning angle 
0°, camera C2 is placed at (x = 0m,y = 3.5m,z = 2.45m) with tilting angle 76°and panning angle 
90°, and camera C3 is placed at (x = 1.83m,y = 7.32m,z = 2.37m) with tilting angle 78°and 
panning angle 156°. The total number of frames is 150 and the average height of targets is 
1.7m. Another important issue is how to locally track targets in each camera. When targets (i.e., 
faces) are occluded each other by three fourths of their size, they fail in the local tracking and 
also lose association information. Since Type II targets are already associated, only Type I 
targets are considered for the association in the simulation. 
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Fig. 18. Illustration of a simulation setup with six objects trajectories and three cameras 

4.2 Association Performance and Complexity Comparison 
The first collaboration strategy selects a pair of cameras satisfying the threshold. The values 
for thD  are the same as the values used in Section 3. The shortest distance between 
homographic lines in each camera is determined and its projected distance is compared with 
the corresponding element of thD  at every frame. Fig. 19 shows the variation of each element 
of distance matrix D  with respect to a corresponding element of threshold matrix thD  for the 
camera selection based approach. If the value of ( , ) / ( , )thm n m nD D  is greater than 1, the 
transformed minimum distance is satisfied with the threshold for a pair of corresponding 
cameras Cm and Cn. When one unassociated target is remained in each camera, the distance 
between targets is set to be the width of image instead of the infinity for the simulation. Fig. 20 
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shows the result of selected cameras at each association time with the results of Fig. 19. If any 
thresholds are not satisfied, none of cameras is selected. 
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(b) In camera C2 (m= 2) 
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Fig. 19. Simulation results of ( , ) / ( , )thm n m nD D  to show possible cameras for the cooperation at 
each assocation time 

 

0 50 100 150

S
elected cam
eras

Association time
C1 C2 C3

 
Fig. 20. Selected cameras by the proposed camera selection method at each association time (seletcted 

cameras are shaded by corresponing colors) 
 

Fig. 21 and Table 3 show the comparison of the proposed approaches with the basic 
pair-wise approach. In Table 3, we consider only a case that objects are detected by multiple 
cameras because the collaboration for the object association is not required for a single camera. 
The performance of the basic pair-wise association approach almost indicates a limit because 
the scheme considers all the pairing cases of multiple cameras through pair-wise collaboration. 
However, the effectiveness of the basic pair-wise association is affected by the redundant 
collaboration of the pair-wise association process among multiple cameras and it creates false 
associations in the system. In order to clearly show the improvement of the performance, the 
false associations are not included in successful associations. The average false association 
rate by the method in [16] is about 6.2% and they are not corrected until they leave the 
surveillance region. It affects the average successful association rate in time. On the other hand, 
the iteration based approach reduces the average false association rate by almost a zero and 
improves the average successful association rate. When the iteration based approach is used 
for multiple objects association, the number of successful association is greater than that of the 
camera selection based approach. This is mainly because the camera selection based approach 
usually selects only a pair of cameras satisfying the threshold and disregards the rest of 
possible association cases. On the other hand, the iteration based approach initiates the 
association process for each target and it leads to improve the association performance. Thus, 
the camera selection based approach requires the longer operation time to increase the 
association rate than the iteration based approach. 
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 (b) Iteration based approach 
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(c) Basic pair-wise approach 

Fig. 21. The objects association status comparison of the camera selection based approach and the 
iteration based approach with the basic pair-wise approach at each association time (‘1’ indicates 
successful association, ‘0’ failed association, and ‘-1’ that object is not shown on both cameras) 

 
Table 3. Performance comparison for Fig. 21 

Oi 

Camera selection based 
approach Iteration based approach Basic pair-wise approach 

Success 
(%) 

Failure 
(%) 

False 
(%) 

Success 
(%) 

Failure 
(%) 

False 
(%) 

Success 
(%) 

Failure 
(%) 

False 
(%) 

O1 82.3 17.7 0.0 100.0 0.0 0.0 88.3 2.9 8.8 
O2 64.9 34.3 0.8 84.8 14.4 0.8 83.3 7.9 8.8 
O3 69.0 30.2 0.8 85.2 14.8 0.0 89.1 7.8 3.1 
O4 39.3 60.7 0.0 91.6 8.4 0.0 75.0 20.2 4.8 
O5 75.8 24.2 0.0 98.5 0.0 1.5 67.0 27.2 5.8 
O6 96.1 3.9 0.0 100.0 0.0 0.0 89.6 4.7 5.7 

Avg. 71.2 28.5 0.3 93.4 6.2 0.4 82.1 11.7 6.2 
 

Fig. 22 shows the simulation result to measure the number of transformations (i.e. CT) and 
the number of intersection tests (i.e. CC) by the association approaches according to the 
number of objects. The results show that the proposed methods are more efficient than the 
basic pair-wise approach. Also, the number of transformations and intersections tests in the 
camera selection based approach is lower than that of the iteration based approach. This is 
because only two selected cameras are participating in the association process. However, in 
terms of the association performance, the selected cameras cannot cover occluded targets as 
the number of targets increases. As a result, the association performance is degraded as 
compared with the iteration based approach in Fig. 23. The iteration based approach increases 
the association performance with the cost of the increased number of transformations and the 
number of intersection tests. 
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(i) Camera selection based approach (ii) Iteration based approach (iii) Basic pair-wise approach
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(a) The number of objects is 2 

(i) Camera selection based approach (ii) Iteration based approach (iii) Basic pair-wise approach
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(b) The number of objects is 4 

(i) Camera selection based approach (ii) Iteration based approach (iii) Basic pair-wise approach
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(c) The number of objects is 6 

Fig. 22. The computational costs comparison of the camera selection based approach and the iteration 
based approach with the basic pair-wise approach according to the number of objects 
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(b) The number of objects is 4 
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(c) The number of objects is 6 

Fig. 23. The association performance comparison of camera selection based approach and iteration 
based approach with the basic pair-wise approach according to the number of objects 

4.3 Discussion 
The simulation result shows that the camera selection based approach has the lower 

successful association rate than the others. However, it is not critical because the result is 
obtained in the limited amount of time and the objects are associated when the sufficient 
separation is satisfied. Hence, the successful association rate can be improved as objects move 
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within the surveillance region in time. A more important issue is to minimize the false 
association so that the consistent global view of multiple cameras is maintained in the system. 
Once objects are falsely associated, they are propagated in time and it may continuously 
generate the inconsistent information through tracking. Especially, when objects are more 
densely populated than the simulation, there is a high possibility that homographic lines are 
not effective for objects association due to the insufficient separation. Then, the basic 
pair-wise collaboration may create false associations more and they can corrupt the consistent 
information in the system. Thus, the effective association collaboration scheme is important to 
accurately and effectively maintain association information for the insufficient separation. 

5. Conclusions 
We present two different strategies for multiple camera collaborations to reduce the false 
association for the object association. Collaboration matrices are defined with the required 
minimum separation for each pair of cameras and used to select a pair of cameras having the 
maximum separation of homographic lines in the first strategy. We have shown that the first 
strategy reduces the number of transformations and intersection tests using homographic lines 
for the object association. However, as a large number of objects are detected, it may require 
the long operation time to achieve the high association rate due to the unsatisfied separation. In 
order to remedy the limitation of the first strategy, the second strategy initiates the 
collaboration process of objects association for all the pairing cases of cameras regardless of 
the separation. The simulation result demonstrates that the association performance is 
improved by the repetitive association processes while the computational costs of using 
homographic lines increase exponentially. The comparison simulation with the basic pair-wise 
approach also shows that the proposed methods reduce the false association effectively. 
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