• Title/Summary/Keyword: Camera monitoring

Search Result 749, Processing Time 0.027 seconds

Design Android-based image processing system using the Around-View (후방 카메라와 USB 장치 기반의 영상처리를 이용한 Around-View 시스템 개발)

  • Kim, Gyu-Hyun;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.465-468
    • /
    • 2014
  • The image processing device sold by the market, which increases the comfort of the driver Around-View of the camera. This system while driving or when parked, came about to prevent accidents caused by driver error or disable the visibility of the system. However, it did not spread widely to the driver due to the problem of the high installation cost and complex installation process from the system for easy operation. Due to problems such as first, expensive equipment and second, the development environment is difficult and third, inconvenient installation process, it is not out because of the prohibitively high cost burden and difficult development environment, programmers and operators. I think if this is solved even one problem of this system would be able to access the user are a little more affordable. In this paper The AVM(Around-View Monitoring) system is proposed, the two problems that minimize expensive equipment, the installation process is inconvenient problem of the three aforementioned systems. Solved the problem caused by a lot of the cost by using low-cost USB device, and a rear camera. Was developed to facilitate the installation is possible by considering the inconvenient installation. Reducing the price paid by consumers because of the system.

  • PDF

Development of the Cloud Monitoring Program using Machine Learning-based Python Module from the MAAO All-sky Camera Images (기계학습 기반의 파이썬 모듈을 이용한 밀양아리랑우주천문대 전천 영상의 운량 모니터링 프로그램 개발)

  • Gu Lim;Dohyeong Kim;Donghyun Kim;Keun-Hong Park
    • Journal of the Korean earth science society
    • /
    • v.45 no.2
    • /
    • pp.111-120
    • /
    • 2024
  • Cloud coverage is a key factor in determining whether to proceed with observations. In the past, human judgment played an important role in weather evaluation for observations. However, the development of remote and robotic observation has diminished the role of human judgment. Moreover, it is not easy to evaluate weather conditions automatically because of the diverse cloud shapes and their rapid movement. In this paper, we present the development of a cloud monitoring program by applying a machine learning-based Python module "cloudynight" on all-sky camera images obtained at Miryang Arirang Astronomical Observatory (MAAO). The machine learning model was built by training 39,996 subregions divided from 1,212 images with altitude/azimuth angles and extracting 16 feature spaces. For our training model, the F1-score from the validation samples was 0.97, indicating good performance in identifying clouds in the all-sky image. As a result, this program calculates "Cloudiness" as the ratio of the number of total subregions to the number of subregions predicted to be covered by clouds. In the robotic observation, we set a policy that allows the telescope system to halt the observation when the "Cloudiness" exceeds 0.6 during the last 30 minutes. Following this policy, we found that there were no improper halts in the telescope system due to incorrect program decisions. We expect that robotic observation with the 0.7 m telescope at MAAO can be successfully operated using the cloud monitoring program.

A Study on the Characteristics of Smartphone Camera as a Medical Radiation Detector (의료 방사선 검출기로써 스마트폰 카메라의 특성에 관한 연구)

  • Kang, Han Gyu;Kim, Ho Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.143-151
    • /
    • 2016
  • The aim of this study is to investigate the optimal algorithm to extract medical radiation induced pixel signal from complementary metal-oxide semiconductor (CMOS) sensors of smartphones camera. The pixel intensity and pixel number of smartphone camera were measured as the X-ray dose was increased. The front camera of the smartphone camera has low noise property and excellent dose response as compared to the back camera of the smartphone. The indirect method which uses scintillation crystal in front of the smartphone camera, couldn't improve the X-ray detection efficiency as compared to the direct method which does not use any scintillator in front of the smartphone camera. When we used the algorithm which employing threshold level on the pixel intensity and pixel number, the dose linearity was more higher for the pixel intensity rather for the pixel number. The use of pixel intensity of Y color component which represents the grey scale, would be efficient in terms of the radiation detection efficiency and reducing the complexity of the image processing. We expect that the radiation dose monitoring can be managed effectively and systematically by using the proposed radiation detection algorithm, thus eventually will contribute to the public healthcare.

Improving Precision of the Exterior Orientation and the Pixel Position of a Multispectral Camera onboard a Drone through the Simultaneous Utilization of a High Resolution Camera (고해상도 카메라와의 동시 운영을 통한 드론 다분광카메라의 외부표정 및 영상 위치 정밀도 개선 연구)

  • Baek, Seungil;Byun, Minsu;Kim, Wonkook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.541-548
    • /
    • 2021
  • Recently, multispectral cameras are being actively utilized in various application fields such as agriculture, forest management, coastal environment monitoring, and so on, particularly onboard UAV's. Resultant multispectral images are typically georeferenced primarily based on the onboard GPS (Global Positioning System) and IMU (Inertial Measurement Unit)or accurate positional information of the pixels, or could be integrated with ground control points that are directly measured on the ground. However, due to the high cost of establishing GCP's prior to the georeferencing or for inaccessible areas, it is often required to derive the positions without such reference information. This study aims to provide a means to improve the georeferencing performance of a multispectral camera images without involving such ground reference points, but instead with the simultaneously onboard high resolution RGB camera. The exterior orientation parameters of the drone camera are first estimated through the bundle adjustment, and compared with the reference values derived with the GCP's. The results showed that the incorporation of the images from a high resolution RGB camera greatly improved both the exterior orientation estimation and the georeferencing of the multispectral camera. Additionally, an evaluation performed on the direction estimation from a ground point to the sensor showed that inclusion of RGB images can reduce the angle errors more by one order.

Development of Building Monitoring Techniques Using Augmented Reality (증강현실을 이용한 건물 모니터링 기법 개발)

  • Jeong, Seong-Su;Heo, Joon;Woo, Sun-Kyu
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.6
    • /
    • pp.3-12
    • /
    • 2009
  • In order to effectively distribute the resources, it is very critical to understand the status or progress of construction site quickly and accurately. Augmented Reality (AR) can provide this situation with information which is convenient and intuitive. Conventional implementation of AR in outdoor or construction site condition requires additional sensors or markers to track the position and direction of camera. This research is aimed to develop the technologies which can be utilized in gathering the information of constructing or constructed buildings and structures. The AR technique that does not require additional devices except for the camera was implemented to simplify the system and improve utility in inaccessible area. In order to do so, the position of camera's perspective center and direction of camera was estimated using exterior orientation techniques. And 3D drawing model of building was projected and overlapped using this information. The result shows that by using this technique, the virtual drawing image was registered on real image with few pixels of error. The technique and procedure introduced in this paper simplifies the hardware organization of AR system that makes it easier for the AR technology to be utilized with ease in construction site. Moreover, this technique will help the AR to be utilized even in inaccessible areas. In addition to this, it is expected that combining this technique and 4D CAD technology can provide the project manager with more intuitive and comprehensive information that simplifies the monitoring work of construction progress and planning.

Development of An Integrated Display Software Platform for Small UAV with Parallel Processing Technique (병렬처리 기법을 이용한 소형 무인비행체용 통합 시현 소프트웨어 플랫폼 개발)

  • Lee, Young-Min;Hwang, In-So;Lim, Bae-Hyeon;Moon, Yong-Ho
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.1
    • /
    • pp.21-27
    • /
    • 2016
  • An integrated display software platform for small UAV is developed based on parallel processing technique in this paper. When the small UAV with high-performance camera and avionic modules is employed to various surveillance-related missions, it is important to reduce the operator's workload and increase the monitoring efficiency. For this purpose, it is needed to develop an efficient monitoring software enable to manipulate the image and flight data obtained during flight within the given processing time and display them simultaneously. In this paper, we set up requirements and suggest the architecture for the software platform. The integrated software platform is implemented with parallel processing scheme. Based on AR drone, we verified that the various data are concurrently displayed by the suggest software platform.

A Mobile Robot for Nuclear Power Plant Applications

  • Kim, Chang-Hoi;Seo, Yong-Chil;Cho, Jai-Wan;Choi, Young-Soo;Kim, Seung-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.803-807
    • /
    • 2003
  • Tele-operation and remote monitoring techniques are essential and important technologies for performing the inspection and repair tasks effectively in nuclear power plants. This paper presents the application of a mobile robot for the remote monitoring and inspection of the Calandria faces, where human access is limited because of the high-level radioactive environments during full power operation. The mobile robot was designed with reconfigurable crawler type of wheels attached on the front and rear side in order to pass through the ditch. The extendable mast, mounted on the mobile robot, can be extended up to 8 m vertically. This robot was also equipped a visible CCD/thermal infrared inspection head module and a stereo camera module for the enhancement of visual inspection.

  • PDF

A Study on Safe School Zone System using LabVIEW

  • Kim, Kyung-Hwa;Shim, Joon-Hwan
    • Journal of Engineering Education Research
    • /
    • v.13 no.5
    • /
    • pp.20-24
    • /
    • 2010
  • The total number of deaths by traffic accidents is decreasing every year in our country. However, in 2009, children died in traffic accidents at a rate of 2.3 deaths per 100,000 children, which was higher than the average of OECD countries (1.9 deaths per 100,000 children). In particular, traffic accidents are showing rapid increase in school zone during the past 2 years because of problems in the designation and management of school zone. Traffic safety facilities such as road sign, reflector mirror, speed bump have the ultimate limit of vehicle accidents prevention. Thus, in school zone, children safety is still not guaranteed due to illegal parking and the absence of driver's awareness of safety. Therefore, In order to protect children from traffic accidents within school zones, we have realized a safe school zone system, which enables the drivers to better know the intended school zones and creates pedestrian environment through unmanned monitoring camera, using LabVIEW.

  • PDF

Wireless Sensor Networks based Forest Fire Surveillance System

  • Son, Byung-Rak;Kim, Jung-Gyu
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.123-126
    • /
    • 2005
  • Wireless Sensor Networks will revolutionize applications such as environmental monitoring, home automation, and logistics. We developed forest fire surveillance system. In this paper, Considering the fact that in Korea, during November to May, forest fires occur very frequently causing catastrophic damages on the valuable environment, Although exists other forest fire surveillance system such as surveillance camera tower, infrared ray sensor system and satellite system. Preexistence surveillance system can't real-time surveillance, monitoring, database and automatic alarm. But, forest fire surveillance system(FFSS) support above. In this paper, we describes a system development approach for a wireless sensor network based FFSS that is to be used to measure temperature and humidity as well as being fitted with a smoke detector. Such a device can be used as an early warning fire detection system and real-time surveillance in the area of a bush fire or endangered public infrastructure. Once the system has being development, a mesh network topology will be implemented with the chosen sensor node with the aim of developing a sophisticated mesh network.

  • PDF

Development of Remote Monitoring and Control Systems Based on Web Technology (웹 기반의 원격감시 및 제어 시스템 개발)

  • Kim, Dong-Min;Lee, Yeong-Ok;Song, Hui-Jun;Chu, Yeong-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.147-150
    • /
    • 2003
  • In this paper, we describe a remote surveillance system to monitor the states of remote processes through Internet on Web browser The images captured from multiple remote cameras are transferred to data server exploiting RTP (Real-time Transport Protocol) and displayed up to 4 channels simultaneously. The angle of cameras is moved vertically an horizontally through RS-232C communication line by motor control board e벼ipped with AT90S2313 CPU.

  • PDF