• Title/Summary/Keyword: Camera System

Search Result 5,137, Processing Time 0.035 seconds

Investigation of a blind-deconvolution framework after noise reduction using a gamma camera in nuclear medicine imaging

  • Kim, Kyuseok;Lee, Min-Hee;Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2594-2600
    • /
    • 2020
  • A gamma camera system using radionuclide has a functional imaging technique and is frequently used in the field of nuclear medicine. In the gamma camera, it is extremely important to improve the image quality to ensure accurate detection of diseases. In this study, we designed a blind-deconvolution framework after a noise-reduction algorithm based on a non-local mean, which has been shown to outperform conventional methodologies with regard to the gamma camera system. For this purpose, we performed a simulation using the Monte Carlo method and conducted an experiment. The image performance was evaluated by visual assessment and according to the intensity profile, and a quantitative evaluation using a normalized noise-power spectrum was performed on the acquired image and the blind-deconvolution image after noise reduction. The result indicates an improvement in image performance for gamma camera images when our proposed algorithm is used.

Correction of Photometric Distortion of a Micro Camera-Projector System for Structured Light 3D Scanning

  • Park, Go-Gwang;Park, Soon-Yong
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.96-102
    • /
    • 2012
  • This paper addresses photometric distortion problems of a compact 3D scanning sensor which is composed of a micro-size and inexpensive camera-projector system. Recently, many micro-size cameras and projectors are available. However, erroneous 3D scanning results may arise due to the poor and nonlinear photometric properties of the sensors. This paper solves two inherent photometric distortions of the sensors. First, the response functions of both the camera and projector are derived from the least squares solutions of passive and active calibration, respectively. Second, vignetting correction of the vision camera is done by using a conventional method, however the projector vignetting is corrected by using the planar homography between the image planes of the projector and camera, respectively. Experimental results show that the proposed technique enhances the linear properties of the phase patterns that are generated by the sensor.

Self-calibration of a Multi-camera System using Factorization Techniques for Realistic Contents Generation (실감 콘텐츠 생성을 위한 분해법 기반 다수 카메라 시스템 자동 보정 알고리즘)

  • Kim, Ki-Young;Woo, Woon-Tack
    • Journal of Broadcast Engineering
    • /
    • v.11 no.4 s.33
    • /
    • pp.495-506
    • /
    • 2006
  • In this paper, we propose a self-calibration of a multi-camera system using factorization techniques for realistic contents generation. The traditional self-calibration algorithms for multi-camera systems have been focused on stereo(-rig) camera systems or multiple camera systems with a fixed configuration. Thus, it is required to exploit them in 3D reconstruction with a mobile multi-camera system and another general applications. For those reasons, we suggest the robust algorithm for general structured multi-camera systems including the algorithm for a plane-structured multi-camera system. In our paper, we explain the theoretical background and practical usages based on a projective factorization and the proposed affine factorization. We show experimental results with simulated data and real images as well. The proposed algorithm can be used for a 3D reconstruction and a mobile Augmented Reality.

Multi-tracer Imaging of a Compton Camera (다중 추적자 영상을 위한 컴프턴 카메라)

  • Kim, Soo Mee
    • Progress in Medical Physics
    • /
    • v.26 no.1
    • /
    • pp.18-27
    • /
    • 2015
  • Since a Compton camera has high detection sensitivity due to electronic collimation and a good energy resolution, it is a potential imaging system for nuclear medicine. In this study, we investigated the feasibility of a Compton camera for multi-tracer imaging and proposed a rotating Compton camera to satisfy Orlov's condition for 3D imaging. Two software phantoms of 140 and 511 keV radiation sources were used for Monte-Carlo simulation and then the simulation data were reconstructed by listmode ordered subset expectation maximization to evaluate the capability of multi-tracer imaging in a Compton camera. And the Compton camera rotating around the object was proposed and tested with different rotation angle steps for improving the limited coverage of the fixed conventional Compton camera over the field-of-view in terms of histogram of angles in spherical coordinates. The simulation data showed the separate 140 and 511 keV images from simultaneous multi-tracer detection in both 2D and 3D imaging and the number of valid projection lines on the conical surfaces was inversely proportional to the decrease of rotation angle. Considering computation load and proper number of projection lines on the conical surface, the rotation angle of 30 degree was sufficient for 3D imaging of the Compton camera in terms of 26 min of computation time and 5 million of detected event number and the increased detection time can be solved with multiple Compton camera system. The Compton camera proposed in this study can be effective system for multi-tracer imaging and is a potential system for development of various disease diagnosis and therapy approaches.

Efficient Object Tracking System Using the Fusion of a CCD Camera and an Infrared Camera (CCD카메라와 적외선 카메라의 융합을 통한 효과적인 객체 추적 시스템)

  • Kim, Seung-Hun;Jung, Il-Kyun;Park, Chang-Woo;Hwang, Jung-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.229-235
    • /
    • 2011
  • To make a robust object tracking and identifying system for an intelligent robot and/or home system, heterogeneous sensor fusion between visible ray system and infrared ray system is proposed. The proposed system separates the object by combining the ROI (Region of Interest) estimated from two different images based on a heterogeneous sensor that consolidates the ordinary CCD camera and the IR (Infrared) camera. Human's body and face are detected in both images by using different algorithms, such as histogram, optical-flow, skin-color model and Haar model. Also the pose of human body is estimated from the result of body detection in IR image by using PCA algorithm along with AdaBoost algorithm. Then, the results from each detection algorithm are fused to extract the best detection result. To verify the heterogeneous sensor fusion system, few experiments were done in various environments. From the experimental results, the system seems to have good tracking and identification performance regardless of the environmental changes. The application area of the proposed system is not limited to robot or home system but the surveillance system and military system.

Development of Fuzzy Inference-based Deterioration Diagnosis System Using Infrared Thermal Imaging Camera (적외선 열화상 카메라를 이용한 퍼지추론 기반 열화진단 시스템 개발)

  • Choi, Woo-Yong;Kim, Jong-Bum;Oh, Sung-Kwun;Kim, Young-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.6
    • /
    • pp.912-921
    • /
    • 2015
  • In this paper, we introduce fuzzy inference-based real-time deterioration diagnosis system with the aid of infrared thermal imaging camera. In the proposed system, the infrared thermal imaging camera monitors diagnostic field in real time and then checks state of deterioration at the same time. Temperature and variation of temperature obtained from the infrared thermal imaging camera variation are used as input variables. In addition to perform more efficient diagnosis, fuzzy inference algorithm is applied to the proposed system, and fuzzy rule is defined by If-then form and is expressed as lookup-table. While triangular membership function is used to estimate fuzzy set of input variables, that of output variable has singleton membership function. At last, state of deterioration in the present is determined based on output obtained through defuzzification. Experimental data acquired from deterioration generator and electric machinery are used in order to evaluate performance of the proposed system. And simulator is realized in order to confirm real-time state of diagnostic field

Engineering run of CQUEAN

  • Park, Won-Kee;Kim, Eun-Bin;Jeong, Hyeon-Ju;Kim, Jin-Young;Lim, Ju-Hee;Choi, Chang-Su;Jeon, Yi-Seul;Pak, Soo-Jong;Im, Myung-Shin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.62.1-62.1
    • /
    • 2010
  • CQUEAN (Camera for QUasars in EArly uNiverse) is an optical CCD camera system that consists of a science CCD camera, a guide CCD camera, and seven filters. In addition, a focal reducer is installed in front of the science camera to secure a larger field of view for the system. Engineering run of the system was carried out from Aug. 10, 2010 to Aug. 17, 2010, with 2.1m Otto Struve telescope at McDonald Observatory, USA, from which we investigated the characteristics and performance of the system. Bias and dark images were taken under various temperature conditions to examine the system behavior, and both twilight and dome flat images were obtained to investigate the appropriate preprocessing procedures of the data. Crude initial estimate indicated one hour integration would reach limiting magnitude of 24.2 in i-band with S/N ratio of 5, with CQUEAN at 2.1m telescope. The detailed results of the engineering run will be presented.

  • PDF

A Study on the Improvement of Pose Information of Objects by Using Trinocular Vision System (Trinocular Vision System을 이용한 물체 자세정보 인식 향상방안)

  • Kim, Jong Hyeong;Jang, Kyoungjae;Kwon, Hyuk-dong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.2
    • /
    • pp.223-229
    • /
    • 2017
  • Recently, robotic bin-picking tasks have drawn considerable attention, because flexibility is required in robotic assembly tasks. Generally, stereo camera systems have been used widely for robotic bin-picking, but these have two limitations: First, computational burden for solving correspondence problem on stereo images increases calculation time. Second, errors in image processing and camera calibration reduce accuracy. Moreover, the errors in robot kinematic parameters directly affect robot gripping. In this paper, we propose a method of correcting the bin-picking error by using trinocular vision system which consists of two stereo cameras andone hand-eye camera. First, the two stereo cameras, with wide viewing angle, measure object's pose roughly. Then, the 3rd hand-eye camera approaches the object, and corrects the previous measurement of the stereo camera system. Experimental results show usefulness of the proposed method.

RGB-LED-based Optical Camera Communication using Multilevel Variable Pulse Position Modulation for Healthcare Applications

  • Rachim, Vega Pradana;An, Jinyoung;Pham, Quan Ngoc;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.6-12
    • /
    • 2018
  • In this paper, a 32-variable pulse position modulation (32-VPPM) scheme is proposed to support a red-green-blue light-emitting-diode (RGB-LED)-based optical camera communication (OCC) system. Our proposed modulation scheme is designed to enhance the OCC data transmission rate, which is targeted for the wearable biomedical data monitoring system. The OCC technology has been utilized as an alternative solution to the radio frequency (RF) wireless system for long-term self-healthcare monitoring. Different biomedical signals, such as electrocardiograms, photoplethysmograms, and respiration signals are being monitored and transmitted wirelessly from the wearable biomedical device to the smartphone receiver. A common 30 frames per second (fps) smartphone camera with a CMOS image sensor is used to record a transmitted optical signal. Moreover, the overall proposed system architecture, modulation scheme, and data demodulation are discussed in this paper. The experimental result shows that the proposed system is able to achieve > 9 kbps using only a common smartphone camera receiver.