• Title/Summary/Keyword: Camera Angle

Search Result 780, Processing Time 0.024 seconds

Robot Posture Estimation Using Circular Image of Inner-Pipe (원형관로 영상을 이용한 관로주행 로봇의 자세 추정)

  • Yoon, Ji-Sup;Kang , E-Sok
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.6
    • /
    • pp.258-266
    • /
    • 2002
  • This paper proposes the methodology of the image processing algorithm that estimates the pose of the inner-pipe crawling robot. The inner-pipe crawling robot is usually equipped with a lighting device and a camera on its head for monitoring and inspection purpose of defects on the pipe wall and/or the maintenance operation. The proposed methodology is using these devices without introducing the extra sensors and is based on the fact that the position and the intensity of the reflected light from the inner wall of the pipe vary with the robot posture and the camera. The proposed algorithm is divided into two parts, estimating the translation and rotation angle of the camera, followed by the actual pose estimation of the robot . Based on the fact that the vanishing point of the reflected light moves into the opposite direction from the camera rotation, the camera rotation angle can be estimated. And, based on the fact that the most bright parts of the reflected light moves into the same direction with the camera translation, the camera position most bright parts of the reflected light moves into the same direction with the camera translation, the camera position can be obtained. To investigate the performance of the algorithm, the algorithm is applied to a sewage maintenance robot.

Design of Infrared Camera for Extended Field of View (시야 확장형 적외선카메라 설계)

  • Lee, Yong-chun;Song, Chun-ho;Kim, Sang-woon;Kim, Young-kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.699-701
    • /
    • 2017
  • Typical operating method for long-range observation cameras are to detect the target at a wide angle of view and to recognize/identify the target with a telephoto angle of view. And the detection/recognition range performance is an important item to evaluate the performance of the defense infrared camera. To increased the detection range performance, the camera's field of view should be narrowed. Due to the narrow field of view, the probability of finding target is relatively low. In this paper, we propose a method to search for target by providing a wide angle view while maintaining detection range performance. M&S and optimized design were used to develop infrared camera with extended field of view and the results of the test summarized.

  • PDF

Mechanical Design and Development of a Digital Tongue Imaging System Equipped with LEDs (LED 광원을 이용한 디지털 혀 영상 촬영장치의 기구설계와 개발)

  • Nam, Dong-Hyun;Kim, Ji-Hye;Lee, Sang-Suk
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.16 no.3
    • /
    • pp.41-48
    • /
    • 2012
  • Objectives: The aims of this study are to design a optimized mechanical structure of digital tongue imaging system (DTIS) equipped with LEDs in aspects of object distance and camera angle of coverage. Methods and Results: We tried to find optimized object distance while recording a rectangular object of common tongue size. In case object distance is 22 cm or less, edge of the rectangle was not taken beyond the shooting range. In contrast, if object distance is 40 cm or more, the rectangle image was too small. Therefore when considering the variation of subjects, we selected distance of 35-40 cm as appropriate object distance for the DTIS. We also tried to find optimized angle between camera view axis and horizontal line. We photographed from the side of the face of 7 adults with exposed tongue. We drew an exposed tongue lines to connect the tongue tip points and the tongue root points by using the photos acquired from the side faces. And then we calculated the tongue exposure angles between the vertical line and the exposed tongue lines. Mean tongue exposure angle was $28.3^{\circ}$ when tongue was lightly exposed and $13.3^{\circ}$ when maximally. So we determined $73^{\circ}$ as appropriate slope angle of part in contact with face of the DTIS and by considering that the standard variation was great, we designed control gears to adjust the slope of the camera view axis and to regulate the object distance. Conclusions: We designed a optimized mechanical structure in object distance and slope angle of part in contact with face of the DTIS.

A Calibration Algorithm Using Known Angle (각도 정보를 이용한 카메라 보정 알고리듬)

  • 권인소;하종은
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.5
    • /
    • pp.415-420
    • /
    • 2004
  • We present a new algorithm for the calibration of a camera and the recovery of 3D scene structure up to a scale from image sequences using known angles between lines in the scene. Traditional method for calibration using scene constraints requires various scene constraints due to the stratified approach. Proposed method requires only one type of scene constraint of known angle and also it directly recovers metric structure up to an unknown scale from projective structure. Specifically, we recover the matrix that is the homography between the projective structure and the Euclidean structure using angles. Since this matrix is a unique one in the given set of image sequences, we can easily deal with the problem of varying intrinsic parameters of the camera. Experimental results on the synthetic and real images demonstrate the feasibility of the proposed algorithm.

The Development Of An Image Stabilization System Using An Extended Kalman Filter Used In A Mobile Robot (모바일 로봇을 위한 Ekf이미지 안정화 시스템 개발)

  • Choi, Yun-Won;Saitov, Dilshat;Kang, Tae-Hun;Lee, Suk-Gyu
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.4
    • /
    • pp.367-376
    • /
    • 2010
  • This Paper Proposes A Robust Image Stabilization System For A Mobile Robot Using An Extended Kalman Filter (Ekf). Though Image Information Is One Of The Most Efficient Data Used For Robot Navigation, It Is Subjected To Noise Which Is The Result Of Internal Vibration As Well As External Factors Such As Uneven Terrain, Stairs, Or Marshy Surfaces. The Camera Vibration Deteriorates The Image Resolution By Destroying The Image Sharpness, Which Seriously Prevents Mobile Robots From Recognizing Their Environment For Navigation. In This Paper, An Inclinometer Was Used To Measure The Vibration Angle Of The Camera System Mounted On The Robot To Obtain A Reliable Image By Compensating For The Angle Of The Camera Vibration. In Addition The Angle Prediction Obtained By Using The Ekf Enhances The Image Response Analysis For Real Time Performance. The Experimental Results Show The Effectiveness Of The Proposed System Used To Compensate For The Blurring Of The Images.

A Study on the Rotation Angle Estimation of HMD for the Tele-operated Vision System (원격 비전시스템을 위한 HMD의 방향각 측정 알고리즘에 관한 연구)

  • Ro, Young-Shick;Yoon, Seung-Jun;Kang, Hee-Jun;Suh, Young-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.605-613
    • /
    • 2009
  • In this paper, we studied for the real-time azimuthal measurement of HMD (Head Mounted Display) to control the tele-operated vision system on the mobile robot. In the preexistence tele-operated vision system, a joystick was used to control the pan-tilt unit of the remote camera system. To give the sense of presence to the tele-operator, we used a HMD to display the remote scene, measured the rotation angle of the HMD on a real time basis, and transmitted the measured rotation angles to the mobile robot controller to synchronize the pan-tilt angles of remote camera with the HMD. In this paper, we suggest an algorithm for the real-time estimation of the HMD rotation angles using feature points extraction from pc-camera image. The simple experiment is conducted to demonstrate the feasibility.

Dividing Occluded Pedestrians in Wide Angle Images for the Vision-Based Surveillance and Monitoring (시각 기반 감시 및 관측을 위한 광각 영상에서의 중첩된 보행자 구분)

  • Park, Jaehyeong;Do, Yongtae
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.54-61
    • /
    • 2015
  • In recent years, there has been increasing use of automatic surveillance and monitoring systems based on vision sensors. Humans are often the most important target in the systems, but processing human images is difficult due to the small sizes and flexible motions. Particularly, occlusion among pedestrians in camera images brings practical problems. In this paper, we propose a novel method to separate image regions of occluded pedestrians. A camera equipped with a wide angle lens is attached to the ceiling of a building corridor for sensing pedestrians with a wide field of view. The output images of the camera are processed for the human detection, tracking, identification, distortion correction, and occlusion handling. We resolve the occlusion problem adaptively depending on the angles and positions of their heads. Experimental results showed that the proposed method is more efficient and accurate compared with existing methods.

An Experimental Study on the Optimal Arrangement of Cameras Used for the Robot's Vision Control Scheme (로봇 비젼 제어기법에 사용된 카메라의 최적 배치에 대한 실험적 연구)

  • Min, Kwan-Ung;Jang, Wan-Shik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.15-25
    • /
    • 2010
  • The objective of this study is to investigate the optimal arrangement of cameras used for the robot's vision control scheme. The used robot's vision control scheme involves two estimation models, which are the parameter estimation and robot's joint angle estimation models. In order to perform this study, robot's working region is divided into three work spaces such as left, central and right spaces. Also, cameras are positioned on circular arcs with radius of 1.5m, 2.0m and 2.5m. Seven cameras are placed on each circular arc. For the experiment, nine cases of camera arrangement are selected in each robot's work space, and each case uses three cameras. Six parameters are estimated for each camera using the developed parameter estimation model in order to show the suitability of the vision system model in nine cases of each robot's work space. Finally, the robot's joint angles are estimated using the joint angle estimation model according to the arrangement of cameras for robot's point-position control. Thus, the effect of camera arrangement used for the robot's vision control scheme is shown for robot's point-position control experimentally.

Development of a Camera-based Position Measurement System for the RTGC with Environment Conditions (실외 주행환경을 고려한 카메라 기반의 RTGC 위치계측시스템 개발)

  • Kawai, Hideki;Kim, Young-Bok;Choi, Yong-Woon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.9
    • /
    • pp.892-896
    • /
    • 2011
  • This paper describes a camera-based position measurement system for automatic tracking control of a rubber Tired Gantry Crane (RTGC). An automatic tracking control of RTGC depends on the ability to measure its displacement and angle from a guide line that the RTGC has to follow. The measurement system proposed in this paper is composed of a camera and a PC that are mounted on the right upper between front and rear tires of the RTGC's side. The measurement accuracy of the system is affected by disturbances such as cracks and stains of the guide line, shadows, and halation from the light fluctuation. To overcome the disturbances, both side edges of the guide line are detected as two straight lines from an input image taken by the camera, and parameters of the straight lines are determined by using Hough transform. The displacement and angle of the RTGC from the guide line can be obtained from these parameters with the robustness against the disturbances. From the experiments with the disturbances, we found the accurate displacement and the angle from the guide line that have the standard deviations of 0.95 pixels and 0.22 degrees, respectively.

Optical Camera Communication Based Lateral Vehicle Position Estimation Scheme Using Angle of LED Street Lights (LED 가로등의 각도를 이용한 광카메라통신기반 횡방향 차량 위치추정 기법)

  • Jeon, Hui-Jin;Yun, Soo-Keun;Kim, Byung Wook;Jung, Sung-Yoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.9
    • /
    • pp.1416-1423
    • /
    • 2017
  • Lane detection technology is one of the most important issues on car safety and self-driving capability of autonomous vehicle. This paper introduces an accurate lane detection scheme based on OCC(Optical Camera Communication) for moving vehicles. For lane detection of moving vehicles, the streetlights and the front camera of the vehicle were used for a transmitter and a receiver, respectively. Based on the angle information of multiple streetlights in a captured image, the distance from sidewalk can be calculated using non-linear regression analysis. Simulation results show that the proposed scheme shows robust performance of accurate lane detection.