• Title/Summary/Keyword: Cam-clay

Search Result 99, Processing Time 0.021 seconds

An Analysis on Stress Distribution within Soft Layer Subject to Embomkment Loading (유안요소법에 의한 식중응력의 해석)

  • Park, Byeong-Gi;Lee, Mun-Su;Lee, Jin-Su
    • Geotechnical Engineering
    • /
    • v.1 no.1
    • /
    • pp.73-84
    • /
    • 1985
  • This Paper aims at investigating the distribution of stresses and the displacement of soft foundation layer subject to embankment load by the finite elements method (FEM). The stresses include the volumetric stress, the Pore water Pressure, the vertical stress. The horizontal stress and the shear stress. The Christian-Boehmer's method was selected as technique for FEM and the general elasticity model and modified Cam-clay model as the governing equations under Plain-strain condition depending on drained and undrained conditions. The results obtained are as follows: 1. The volumetric stress is almost consistent with the pore water pressure. This means that the total stress is the same value with the pore water pressure under the undrined condition 2. The vertical stress appears in the same value regardless of the drained or undrained condition and the model of the constitutive equations. 3. The horizontal stress has almost same value with the drain condition model. 4. depending on the constitutive model. The shear stress is affected by both the drain condition and the constitute model. The resulted value by the modified Cam-clay model has the largest. 5. The direction of the displacement vector turns outward near the tip of load during the increasing load. 6. The magnitude of displacement due to the modified Cam.clay model is as twice large as that due to elastic model.

  • PDF

An Analysis of Deformation on Soft Clay Layer by Model Test (모형실험에 의한 연약점토지반의 변형해석)

  • 강병선
    • Geotechnical Engineering
    • /
    • v.4 no.4
    • /
    • pp.51-60
    • /
    • 1988
  • 기초지반에 대한 응력·변형률관계를 규명하기 위하여 소성론에 기초를 둔 구성방정식이 폭넓게 이용되고 있다. 본문은 성토나 강성기초와 같은 지반구조물을 연약점토지반에 축조하였을 때에 발생하는 변형에 관해 연구코저 한 것이다. 본 연구를 위하여 2차원모형토조를 제작, 재하실험한 시료를 재하실험을통하여 침하, 융기, 측방변위등을 측정하고 이들을 여러구함식과 비교고찰하였다. 구성식으로서는 한계상태개념에 근거를 둔 Cam-clay, Modified Cam-clay그리고 시간의존성을 고려한 탄·정감성 model인 Sakiguchi model을 이용하고 이들을 수치해를 통해 고찰하였다. 본 모형실험에 의하면 변형을 예측하는데 있어서 ModifiedICam-clay model이 Original Cam-clay"model 보다 실측치에 가까웠으며 또한 시간의존성을 고려한 탄·점견성 model인 Sekiguchi model'는 본 실험에서처럼 단기간의 실험에서는 변형의 creep조건을 만족시키지 못하므로 현장조건에 따라 잘- 판단하여 적용하여 야할 것으로 판단 된다.

  • PDF

A Study on the Stabilization of Coal Ash Ground by Geotechnical Engineering Analysis Cam-clay model for Deformation Analysis of Coal Ash Ground (토질공학적 해석방법에 의한 석탄회 폐기물지반의 안정처리에 관한 연구 -지반변형해석을 위한 Cam-clay model을 중심으로)

  • 천병식
    • Geotechnical Engineering
    • /
    • v.14 no.1
    • /
    • pp.81-92
    • /
    • 1998
  • Coal ash from thermal power plants has been produced in large quantity and discarded uselessly, However, it is possible to supply construction material properly by utilizing the coal ash as construction material. In this study, the applicable model and its applicability for deformation analysis of coal ash fill and reclamation ground are studied. Camflay model gives complete constitutive law which illustrates deformation and pore water pressure while soil is loaded under the various stresses at drained and undrained conditions. The merit of proposed model which is acquired from laboratory tests is that only a few soil parameters are available. The whole parameters of Camflay model are obtained by typical mechanical test and CV triaxial test on the sample with optimum mixing ratio( i.e. fly ash : bottom ash=5:5) Then the results from proposed numerical analysis are compared with laboratory results. The differences between laboratory test and numerical analysis are negligible. Parameters deter mined from laboratory tests are useful as a basic data for deformation analysis of coal ash reclamation ground using Camflay model.

  • PDF

Numerical Analysis on Effects of Horizontal Drain Arrangement of Vacuum Consolidation (수평배수재 배열의 진공압밀효과에 대한 수치해석)

  • Park, Byung-Soo;Jeong, Gil-Soo;Lee, Jong-Ho;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.23 no.A
    • /
    • pp.109-118
    • /
    • 2003
  • This paper is results of numerical works of investigating effects of horizontal drain arrangements on vacuum consolidation. Extensive numerical analyses were carried out to find the appropriate arrangements of horizontal drain of vacuum consolidation. Commercially available program of CRISP, well known to be good to modelling the behavior of clay material, was used Cam-clay model, based on the Critical State of Soil Mechanics(CSSM), was used to simulate the geotechnical engineering behavior of clay. Model test results carried out previously in the laboratory were compared with numerically estimated results and it was found that results about consolidational settlement with times were in good agreements. Based on this confirmation, parametric numerical study was performed to investigate effects of horizontal drain arrangements on vacuum consolidation with changing the vertical and horizontal spacings between drains for the given soil properties and vacuum. The effect of distance of drain located in top layer from the surface of the ground on the settlement due to vacuum was also investigated. As a results of numerical analyses, appropriate arrangements of horizontal drain to maximize the consolidation settlement due to vacuum were found. The mechanism of vacuum consolidation about the vacuum pressures being transferred to the effective stresses around drains was also evaluated.

  • PDF

Behavior Characteristics of Embankment Foundation Based on Elasto-Viscoplastics Analysis (성토기초지반의 탄.점소성 거동 특성)

  • ;;Li Guang Fan
    • Journal of the Korea Institute of Building Construction
    • /
    • v.1 no.1
    • /
    • pp.151-159
    • /
    • 2001
  • This study was performed to investigate the effect of time-dependent creep on the deformation. In the analysis, modified Cam-Clay model was adopted to describe the elastic-plastic behavior of clayey soil. In order to consider effect of creep, the secondary coefficient of consolidation $\alpha$ was supplemented to modified Cam-Clay model. To examine the reliability of the program which is developed in this study, the estimated values by this program were compared with the experimental results. The results of the analysis were in good agreement with the observed values in the field.

  • PDF

Created cavity expansion solution in anisotropic and drained condition based on Cam-Clay model

  • Li, Chao;Zoua, Jin-Feng
    • Geomechanics and Engineering
    • /
    • v.19 no.2
    • /
    • pp.141-151
    • /
    • 2019
  • A novel theoretical solution is presented for created (zero initial radius) cavity expansion problem based on CamClay model and considers the effect of initial anisotropic in-situ stress and drained conditions. Here the strain of this theoretical solution is small deformation in elastic region and large deformation in plastic region. The works for cylindrical and spherical cavities expanding in drained condition from zero initial radius are investigated. Most of the conventional solutions were based on the isotropic and undrained condition, however, the initial stress state of natural soil mass is anisotropy by soil deposition history, and drained cavity expansion calculation is closer to actual engineering in permeable soil mass. Finally, the parametric study is presented in order to the engineering significance of this work.

A novel approach for predicting lateral displacement caused by pile installation

  • Li, Chao;Zou, Jin-feng;Li, Lin
    • Geomechanics and Engineering
    • /
    • v.20 no.2
    • /
    • pp.147-154
    • /
    • 2020
  • A novel approach for predicting lateral displacement caused by pile installation in anisotropic clay is presented, on the basis of the cylindrical and spherical cavities expansion theory. The K0-based modified Cam-clay (K0-MCC) model is adopted for the K0-consolidated clay and the process of pile installation is taken as the cavity expansion problem in undrained condition. The radial displacement of plastic region is obtained by combining the cavity wall boundary and the elastic-plastic (EP) boundary conditions. The predicted equations of lateral displacement during single pile and multi-pile installation are proposed, and the hydraulic fracture problem in the vicinity of the pile tip is investigated. The comparison between the lateral displacement obtained from the presented approach and the measured data from Chai et al. (2005) is carried out and shows a good agreement. It is suggested that the presented approach is a useful tool for the design of soft subsoil improvement resulting from the pile installation.

Integration of Stress-Strain Rate Equations of CASM

  • Koh, Tae-Hoon
    • International Journal of Railway
    • /
    • v.3 no.4
    • /
    • pp.117-122
    • /
    • 2010
  • In transportation geotechnical engineering, stress-strain behavior of earth structures has been analyzed by numerical simulations with the implemented plasticity constitutive model. It is a fact that many advanced plasticity constitutive models on predicting the mechanical behavior of soils have been developed as well as experimental research works for geotechnical applications in the past decades. In this study, recently developed, a unified constitutive model for both clay and sand, which is referred to as CASM (clay and sand model), was compared with a classical constitutive model, Cam-Clay model. Moreover, integration methods of stress-strain rate equations using CASM were presented for simulation of undrained and drained triaxial compression tests. As a conclusion, it was observed that semi-implicit integration method has more improved accuracy of capturing strain rate response to applied stress than explicit integration by the multiple correction and iteration.

  • PDF

Comparison of MCC and SSC Models Based on Numerical Analysis of Consolidation Test (압밀시험의 수치해석에 의한 MCC 모델과 SSC 모델 비교)

  • Kwon, Byenghae;Eam, Sunghoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.2
    • /
    • pp.1-12
    • /
    • 2024
  • In order to integrate two consolidation theories of Terzaghi's consolidation theory and Mesri's secondary compression theory and to identify a model suitable for analyzing stress-strain behavior over time, numerical analysis on consolidation tests were conducted using a modified cam-clay model and a soft soil creep model and the following conclusions were obtained. The results of numerical analysis applying the theory that a linear proportional relationship is established between the void ratio at logarithmic scale and the permeability coefficient at logarithmic scale is better agreement with the result of oedometer test than the results of applying constant hydraulic conductivity. The modified cam-clay model is a model that does not include secondary compression, but the slope of the normal consolidation line corresponding to the compression index of the standard consolidation test includes secondary compression, so the actual settlement curve over time is lower than the predicted value through numerical analysis. It always gets smaller. Other previous studies that applied Terzaghi's consolidation theory to consolidation test analysis showed the same results and were cross-confirmed. The soft soil creep model, which includes secondary compression in the theory, showed good agreement in all sections including secondary compression in the consolidation test results. It was judged appropriate to use a soft soil creep model when performing numerical analysis of soft clay ground.