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Abstract

In transportation geotechnical engineering, stress-strain behavior of earth structures has been analyzed by numerical sim-

ulations with the implemented plasticity constitutive model. It is a fact that many advanced plasticity constitutive mod-

els on predicting the mechanical behavior of soils have been developed as well as experimental research works for

geotechnical applications in the past decades. In this study, recently developed, a unified constitutive model for both clay

and sand, which is referred to as CASM (clay and sand model), was compared with a classical constitutive model, Cam-

Clay model. Moreover, integration methods of stress-strain rate equations using CASM were presented for simulation of

undrained and drained triaxial compression tests. As a conclusion, it was observed that semi-implicit integration method

has more improved accuracy of capturing strain rate response to applied stress than explicit integration by the multiple

correction and iteration.

Keywords : CASM (clay and sand model), Cam-Clay model, Semi-implicit integration, Explicit integration, Stress-strain

rate equation

1. Introduction

CASM was proposed by Yu (1998), and regarded as a

simple, unified constitutive model based on critical-state

theory. This model is able to predict the behavior of clay

and sand more accurately, comparing with Cam-Clay

model (Roscoe and Schofield, 1963) and Modified Cam-

Clay model (Roscoe and Burland, 1968).

In this study, a unified constitutive model for both clay

and sand, which is referred as CASM (clay and sand

model), was compared with a classical constitutive model,

Cam-Clay model. Moreover, integration methods of

stress-strain rate equations using CASM were presented

for simulation of undrained and drained triaxial compres-

sion tests.

2. CASM and Cam-Clay Model

2.1 Framework

Cam-Clay model can be derived from the virtual work

theorem as:

 (1) 

where dW is the energy dissipated due to the plastic work, the

external work done by the mean effective stress (p') and devi-

atoric stress (q) is equal to the internal work done by the shear

stress,  and  are volumetric and shear plastic strain,

respectively, and M is the ratio of q/p' at the critical state.

Then, flow rule and normality rule may be given as fol-

lows, respectively:

(2)

 (3)

where η is the ratio of q/p’ at yield.

Plastic potential (g) is able to be driven from Equations

(2) and (3), 

 (4)

where p’c indicates the size of the plastic potential.

In Cam-Clay model, the plastic potential(g) of Cam-

Clay model is identical to the yield function (F).
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On the other hand, plastic potential of CASM follows

Rowe’s stress-dilatancy relation (Rowe, 1962) which defines

the relationship between stress ratio and dilatancy rate:

(5)

Rowe’s stress-dilatancy relation may be integrated to

give the following plastic potential:

 

      (6)

where  is size parameter. 

Since CASM adopted the non-associated flow rule, plas-

tic potential (Equation (6)) is not identical to the yield sur-

face (Equation (7)):

(7)

The yield function of CASM is a form of generalized

Cam-Clay model because the yield function of Cam-Clay

model is able to be specified from CASM yield function

using n=1 and r=e.

Different shapes of the plastic potentials of Cam-Clay,

Modified Cam-Clay and CASM are shown in Fig. 1. The

shape of CASM’s plastic potential is very similar to that of

the original Cam-clay model.

CASM has the same 5 model parameters ( )

with those used in Cam-clay model (Fig. 2). In addition,

two more parameters are needed to interpret CASM, i.e. r

and n. r is the spacing ratio to control the intersection posi-

tion of critical-state line and yield function. n is the stress-

state coefficient to specify the shape of yield function, and

the typical value of n is 1 to 5.

2.2 Limitations of Cam-Clay model

The original Cam-Clay model can capture the behavior

of normally (NC) and lightly overconsolidated (OC) clay

well. However, there are several limitations of these mod-

els as follows:

- Cam-Clay model does not take into account the anisot-

ropy of soil which is one of the basic characteristics.

- Cam-Clay model cannot predict the stress-strain

response of OC clay and that of sand (dilative soil). 

- Cam-Clay model overestimates the failure stress on the

dry side, etc. 

3. Integration Methods

For the finite element analysis of elasto-plastic stress-

strain behavior of soil in boundary-value problems, imple-

mentation of constitutive model in the finite element code

requires a numerical integration of the constitutive stress-

strain rate equations.

In this study, for integrating stress-strain rate equation,

semi-implicit integration method is mainly used combin-

ing the simplicity of explicit method with the improved

accuracy of implicit method.

In order to have the improved accuracy in semi-implicit

method, the corrector is used during iteration in order to

control the size of yield function.

The equations used for integration are given as follows:
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Fig. 1 Shapes of plastic potential surfaces

(Modified after Khong, 2004)

Fig. 2 Description of model parameters

(Modified after Khong, 2004)
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Yield function,

Plastic potential,

Hardening modulus,

where 

Differentiating F and g with respect to q and ,

3.1 Undrained Case

The flow chart for explicit and semi-implicit integration

methods is shown in Fig. 4, which is under undrained tri-

axial compression condition. 

Variables for integration under undrained condition are

as follows:

Linear elastic constitutive relationships are

(8)

Stress increment parameters are

 (9)

Strain increment parameters are

 (10)

By non-associated flow rule, plastic strain rates are 

 (11)
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Fig. 3 Semi-implicit integration method

(Modified after Ortiz and Simo, 1986)

Fig. 4 Flow chart for integration methods under undrained 

triaxial compression condition
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Substituting Equation (10) into Equation (8),

 (I)

 (II)

where  since the volume is not changed through the test.

Procedures for estimation of Equation (III) and unknown

value ( ) are as follows:

From consistency condition ( ),

 (III)

Substituting Equations (I) and (II) into Equation (III),

(12)

3.2 Drained Case

The flow chart for explicit and semi-implicit integration

methods is shown in Fig. 5, which is under drained triax-

ial compression condition. 

Variables for integration under drained condition are as

follows:

Linear elastic constitutive relationships are

(13)

Stress increment parameters are

 (14)

Strain increment parameters are

 (15)

By non-associated flow rule, plastic strain rates are 

 (16)

Set Equation (13) is equal to Equation (14) after substi-

tuting Equations (15) and Equation (16) into Equation (13).

(IV)

 (V)

where  since the confining stress is constant

through the test.

Procedures for estimation of Equation (VI) and unknown
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Fig. 5 Flow chart for integration methods under drained 

triaxial compression condition



Integration of Stress-Strain Rate Equations of CASM

− 121 −

values ( ) are as follows:

From consistency condition ( ),

(17)

Substituting Equation (14) into Equation (17),

 (VI)

From Equations (IV) and (V),

 (18-a)

 (18-b)

 (19-a)

 (19-b)

 can be determined from the summation of Equa-

tions (19-a) and (19-b) as follows:

 (20)

 can be determined from substituting Equation (20)

into Equation (VI).

(21)

 can be determined from Equation (18-a).
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Fig. 6 Comparison of stress-strain response for heavily 

overconsolidated Weald clay
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4. Simulations

Fig. 6 shows the simulations of the triaxial compression

tests for heavily overconsolidated Weald clay (OCR=24)

using the constitutive models. The stress-strain response was

predicted by implementation of Cam-Clay model (model

parameters; M=0.9, =2.06, =0.093, =0.025, = 0.3,

r=2.718, n=1.0) and CASM (model parameters; M=0.9,

=2.06, =0.093, =0.025, =0.3, =0.0679, n=4.5),

and compared to the test results under undrained and

drained triaxial compression conditions.

It was shown that CASM broadly simulated well the

undrained test (Fig. 6 (a)). As shown in Fig. 6 (b), although

the predicted axial strains for the shear strength (peak

deviatoric stress) were smaller than those observed in tests,

in general, CASM captured well the stress-strain response

in the pre-peak and post-peak regimes. However, Cam-

Clay model showed the limitation to predict the behavior

of OC clay.

Fig. 7 shows the results from explicit and semi-implicit

integration procedures for London clay (OCR=2-4) under

undrained triaxial compression condition in which CASM

parameters are M=0.888, =2.759, =0.161, =0.062,

=0.3, r=3.0, and n=2.0.

At 150 kPa confining stress, the predicted response by

the semi-implicit integration was more accurate to the

experimental results than that by explicit method. 

5. Conclusion

In this study, a unified constitutive model, CASM (clay

and sand model), was compared with a classical constitu-

tive model, Cam-Clay model. It can be concluded that based

on the good agreement between the simulations and the

experimental results, the framework of CASM is useful for

modeling the undrained and drained response of soil.

Moreover, explicit and semi-implicit integration meth-

ods of stress-strain rate equations were presented for simu-

lation of undrained and drained triaxial compression

loading. In comparing the predicted and experimental

responses, it can be seen that the semi-implicit integration

method captured well the main features of soil behavior

because of the improved accuracy in semi-implicit method.
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