• 제목/요약/키워드: Calvarial defect

검색결과 163건 처리시간 0.028초

스트렙토조토신 유도 당뇨백서의 골조직 재생에 흡수성 차폐막이 미치는 영향 (The Effect of Bioresorbable Membrane on the Bone Regeneration of Streptozotocin Induced Diabetic Rats)

  • 양병근;이학철;이지영;손강배;설양조;이상철;계승범;정종평;한수부
    • Journal of Periodontal and Implant Science
    • /
    • 제30권2호
    • /
    • pp.287-305
    • /
    • 2000
  • The purpose of this study is to evaluate the effects of bioresorbable membranes in guided bone regeneration of streptozotocin induced diabetic rats. 50 Sprague-Dawley rats were randomly categorized into 4 groups: Group 1 & 2 had 10 normal rats each and group 3 & 4 included 15 streptozotocin induced diabetic rats each. Defect measuring 7mm in diameter was formed on every rat calvarium. No membrane was used in groups 1 & 3 and membranes were used in groups 2 & 4. The rates were sacrificed at 2 and 4 weeks after defect formation. Routine histological specimens were prepared. Masson-trichrome and HE stain were done before light microscopy. Guided regenerative potential was evaluated by measuring the amount of new bone formation in the calvarial defect by histomorphometry. Following results were obtained. 1. New bone formation in the diabetic groups was significantly less that than in the normal groups regardless of membrane use(p<0.05). 2. In the comparison of new bone formation in the normal groups, membrane group showed significantly more bone formation(p<0.1). 3. When the amount of new bone formation was compared in the diabetic groups, more bone was formed in the membrane groups but the difference was not statistically significant.4. In the normal groups the amount of new bone formation was significantly greater at 4 weeks compared to that at2 weeks(p<0.05) but amount of bone regeneration at 4 weeks was not significantly greater than that at 2 weeks in both diabetic groups.

  • PDF

가토 두개골 결손부에 이식된 ${\beta}-TCP$의 골치유 과정에서 PRP의 효과에 관한 연구 (THE EFFECT OF PRP ON THE BONE REGENERATION OF ${\beta}-TCP$ GRAFTED IN RABBIT CRANIAL BONE DEFECT)

  • 이성훈;황경균;박창주;임병섭;조정연;백승삼;심광섭
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제28권5호
    • /
    • pp.417-433
    • /
    • 2006
  • Purpose : Platelet rich plasma (PRP) is an autologous material with many growth factors, such as BMPs, PDGF, $TGF-{\beta}_1$, $TGF-{\beta}_2$, VEGF, and IGF, facilitating bone healing process. The prominent osteoconductive activity and the biodegradable nature of beta-tricalciumphosphate (${\beta}-TCP$) for bone grafts in animal experiments have been reported. The purpose of this study was to evaluate the effect of PRP on the osteogenesis of ${\beta}-TCP$. Materials & Methods : Two artificial calvarial bone defects were made in 32 rabbits which were divided into 2 groups. In one group of 16 rabbits, autogenous bone / ${\beta}-TCP$ was grafted on each side of cranial bone defect. In the other group of 16 rabbits, mixture of ${\beta}-TCP$ and PRP / PRP alone was grafted on each side of the cranial bone defect. The animals were sacrificed at 2, 4, 8, and 12 weeks after surgery. The specimens were harvested and examined histologically and immunohistochemically by the expression of BMP2/4/7, PDGF, VEGF and $TGF-{\beta}_1$. Results : The mean volume of new bone formation was significantly higher at 4, 8, 12 weeks in autogenous graft than that in ${\beta}-TCP$. The BMP2/4 expression was significantly higher at 4 weeks in autogenous bone graft and at 4 weeks in mixture of ${\beta}-TCP$ and PRP and at 12 weeks in ${\beta}-TCP$. The expression of BMP7, PDGF, VEGF and $TGF-{\beta}_1$ showed no significant difference in autogenous, ${\beta}-TCP$, mixture of ${\beta}-TCP$ and PRP, and PRP alone during grafted bone regeneration. Conclusion : The results showed that PRP had no additional value in promoting healing process of ${\beta}-TCP$ grafts.

Demineralized dentin matrix combined with recombinant human bone morphogenetic protein-2 in rabbit calvarial defects

  • Um, In-Woong;Hwang, Suk-Hyun;Kim, Young-Kyun;Kim, Moon-Young;Jun, Sang-Ho;Ryu, Jae-Jun;Jang, Hyon-Seok
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제42권2호
    • /
    • pp.90-98
    • /
    • 2016
  • Objectives: The aim of this study was to compare the osteogenic effects of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) in rabbit calvarial defects with DDM and anorganic bovine bone (ABB) combined with rhBMP-2. Materials and Methods: Four round defects with 8-mm diameters were created in each rabbit calvaria. Each defect was treated with one of the following: 1) DDM, 2) ABB/rhBMP-2, or 3) DDM/rhBMP-2. The rhBMP-2 was combined with DDM and ABB according to a stepwise dry and dip lyophilizing protocol. Histological and microcomputed tomography (${\mu}CT$) analyses were performed to measure the amount of bone formation and bone volume after 2- and 8-week healing intervals. Results: Upon histological observation at two weeks, the DDM and ABB/rhBMP-2 groups showed osteoconductive bone formation, while the DDM/rhBMP-2 group showed osteoconductive and osteoinductive bone formation. New bone formation was higher in DDM/rhBMP-2, DDM and ABB decreasing order. The amounts of bone formation were very similar at two weeks; however, at eight weeks, the DDM/rhBMP-2 group showed a twofold greater amount of bone formation compared to the DDM and ABB/rhBMP-2 groups. The ${\mu}CT$ analysis showed markedly increased bone volume in the DDM/rhBMP-2 group at eight weeks compared with that of the DDM group. Notably, there was a slight decrease in bone volume in the ABB/rhBMP-2 group at eight weeks. There were no significant differences among the DDM, ABB/rhBMP-2, and DDM/rhBMP-2 groups at two or eight weeks. Conclusion: Within the limitations of this study, DDM appears to be a suitable carrier for rhBMP-2 in orthotopic sites.

후박 및 홍화종자 추출혼합물이 치주인대세포 및 골아세포의 활성도 및 백서의 두개골재생에 미치는 영향 (The biologic effects of magnoliae cortex extract and safflower seed (Carthamus tinctorius $Linn{\acute{e}}$) extract mixture on PDL cells and osteoblasts)

  • 신승윤;이용무;구영;배기환;정종평
    • Journal of Periodontal and Implant Science
    • /
    • 제28권4호
    • /
    • pp.545-559
    • /
    • 1998
  • Magnoliae cortex has been used as a drug for treatment of fractures in Chinese medicine and safflower(Carthamus tinctorius $Linn{\acute{e}}$) has been traditionally used for treatment of blood stasis. The purpose of present study was to examine the biologic effects of magnoliae cortex extract and safflower extract mixture(MSM) on human periodontal ligament cells and fetal rat calvarial osteoblasts and on healing of rat calvarial defects. The ethanolic extracts of magnoliae cortex(MCE), safflower seed(SSE), Zea May L(ZML) were prepared as positive control group. MSM mixed to the ratios of 1 : 1, 1 : 2, 1 : 5 and 1 : 10 were used as test group. The effects of each agents on the growth and survival, ALPase activity, cell proliferation and tissue regenerative effect of each extracts was evaluated by histomorphometric measuring of newly formed bone on the 8 mm defect in rat calvaria after oral administration of 2 ratio groups(1 : 5 and 1 : 10) at 3 different doses (0.1, 0.25 and 0.5g/kg per day). MSM stimulated the growth and survival rate of osteoblasts and PDL cells more than any other agents. The growth and survival rate were increased as the proportion of safflower seed extract was increased. MCE, SSE, ZML stimulated the ALPase activity of osteoblast and PDL cell in comparison to the negative control group. But all groups of MSM regardless of ratio of safflower seed extract stimulated the ALPase activity than any other agent. The ALPase activity was also increased as the proportion of safflower seed extract was increased. Although MCE, SSE, ZML stimulated the proliferation of osteoblasts. 1 : 5 and 1 : 10 ratio MSM showed significant increase in stimulation of proliferation of osteoblasts. No agent significantly increased proliferation of PDL cells. Significant new bone formation were seen where 1 : 5 ratio, 0.5g/kg group and 1 : 10 ratio, 0.25, 0.5g/kg groups were used. These results show that magnoliae cortex extract and safflower seed extract mixture can potentially increase bone regeneration ability.

  • PDF

Bone regeneration effects of human allogenous bone substitutes: a preliminary study

  • Lee, Deok-Won;Koo, Ki-Tae;Seol, Yang-Jo;Lee, Yong-Moo;Ku, Young;Rhyu, In-Chul;Chung, Chong-Pyoung;Kim, Tae-Il
    • Journal of Periodontal and Implant Science
    • /
    • 제40권3호
    • /
    • pp.132-138
    • /
    • 2010
  • Purpose: The purpose of this study was to compare the bone regeneration effects of cortical, cancellous, and cortico-cancellous human bone substitutes on calvarial defects of rabbits. Methods: Four 8-mm diameter calvarial defects were created in each of nine New Zealand white rabbits. Freeze-dried cortical bone, freeze-dried cortico-cancellous bone, and demineralized bone matrix with freeze-dried cancellous bone were inserted into the defects, while the non-grafted defect was regarded as the control. After 4, 8, and 12 weeks of healing, the experimental animals were euthanized for specimen preparation. Micro-computed tomography (micro-CT) was performed to calculate the percent bone volume. After histological evaluation, histomorphometric analysis was performed to quantify new bone formation. Results: In micro-CT evaluation, freeze-dried cortico-cancellous human bone showed the highest percent bone volume value among the experimental groups at week 4. At week 8 and week 12, freeze-dried cortical human bone showed the highest percent bone volume value among the experimental groups. In histologic evaluation, at week 4, freeze-dried cortico-cancellous human bone showed more prominent osteoid tissue than any other group. New bone formation was increased in all of the experimental groups at week 8 and 12. Histomorphometric data showed that freeze-dried cortico-cancellous human bone showed a significantly higher new bone formation percentile value than any other experimental group at week 4. At week 8, freeze-dried cortical human bone showed the highest value, of which a significant difference existed between freeze-dried cortical human bone and demineralized bone matrix with freeze-dried cancellous human bone. At week 12, there were no significant differences among the experimental groups. Conclusions: Freeze-dried cortico-cancellous human bone showed swift new bone formation at the 4-week healing phase, whereas there was less difference in new bone formation among the experimental groups in the following healing phases.

Enhanced Healing of Rat Calvarial Bone Defects with Hypoxic Conditioned Medium from Mesenchymal Stem Cells through Increased Endogenous Stem Cell Migration via Regulation of ICAM-1 Targeted-microRNA-221

  • Chang, Woochul;Kim, Ran;Park, Sang In;Jung, Yu Jin;Ham, Onju;Lee, Jihyun;Kim, Ji Hyeong;Oh, Sekyung;Lee, Min Young;Kim, Jongmin;Park, Moon-Seo;Chung, Yong-An;Hwang, Ki-Chul;Maeng, Lee-So
    • Molecules and Cells
    • /
    • 제38권7호
    • /
    • pp.643-650
    • /
    • 2015
  • The use of conditioned medium from mesenchymal stem cells may be a feasible approach for regeneration of bone defects through secretion of various components of mesenchymal stem cells such as cytokines, chemokines, and growth factors. Mesenchymal stem cells secrete and accumulate multiple factors in conditioned medium under specific physiological conditions. In this study, we investigated whether the conditioned medium collected under hypoxic condition could effectively influence bone regeneration through enhanced migration and adhesion of endogenous mesenchymal stem cells. Cell migration and adhesion abilities were increased through overexpression of intercellular adhesion molecule-1 in hypoxic conditioned medium treated group. Intercellular adhesion molecule-1 was upregulated by microRNA-221 in mesenchymal stem cells because microRNAs are key regulators of various biological functions via gene expression. To investigate the effects in vivo, evaluation of bone regeneration by computed tomography and histological assays revealed that osteogenesis was enhanced in the hypoxic conditioned medium group relative to the other groups. These results suggest that behavioral changes of endogenous mesenchymal stem cells through microRNA-221 targeted-intercellular adhesion molecule-1 expression under hypoxic conditions may be a potential treatment for patients with bone defects.

Biomimetic characteristics of mussel adhesive protein-loaded collagen membrane in guided bone regeneration of rabbit calvarial defects

  • Song, Woong-Kyu;Kang, Joo-Hyun;Cha, Jae-Kook;Lee, Jung-Seok;Paik, Jeong-Won;Jung, Ui-Won;Kim, Byung-Hoon;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • 제48권5호
    • /
    • pp.305-316
    • /
    • 2018
  • Purpose: The aim of the present study was to evaluate the biocompatibility and barrier function of mussel adhesive protein (MAP)-loaded collagen membranes in guided bone regeneration (GBR). Methods: Eight male New Zealand white rabbits were used. Four circular defects (diameter: 8 mm) were created in the calvarium of each animal. The defects were randomly assigned to 1) a negative control group, 2) a cyanoacrylate (CA)-loaded collagen membrane group (the CA group), 3) a MAP-loaded collagen membrane group (the MAP group), and 4) a group that received a polycaprolactone block with MAP-loaded collagen membrane (the MAP-PCL group). Specimens were harvested at 2 weeks (n=4) and 8 weeks (n=4) postoperatively for observational histology and histometric analysis. Results: In the histologic analysis, MAP was completely absorbed without any byproducts. In contrast, some of the CA adhesive remained, showing an inflammatory reaction, at 8 weeks. In the MAP-PCL group, the MAP-loaded collagen membranes served as a barrier membrane despite their fast degradation in GBR. No significant difference was found in the amount of new bone between the MAP-PCL and MAP groups ($1.82{\pm}0.86mm^2$ and $2.60{\pm}0.65mm^2$, respectively). Conclusions: The MAP-loaded collagen membrane functioned efficiently in this rabbit calvarial GBR model, with excellent biocompatibility. Further research is needed to assess clinical applications in defect types that are more challenging for GBR than those used in the current model.

혈소판유래성장인자를 함유한 TCP-chitosan 미세과립이 신생골조직 형성에 미치는 영향에 관한 연구 (The effect of PDGF-BB loaded TCP/chitosan microgranules on new bone formation)

  • 설양조;이주연;계승범;이영규;김원경;이용무;구영;한수부;이승진;정종평;류인철
    • Journal of Periodontal and Implant Science
    • /
    • 제32권3호
    • /
    • pp.489-500
    • /
    • 2002
  • The purpose of this study was to evaluate newly fabricated tricalcium phosphate(TCP)/chitosan microgranuls as bone substitutes. TCP/chitosan microgranules were fabricated by dropping TCP-chitosan suspension into the NaOH/ethanol solution. The size of microgranules could be controllable via airflow rate. PDGF-BB was loaded into the fabricated granules via freeze-drying methods(300 ng/20 mg). To evaluate cell proliferation, cultured osteoblasts cell lines(MC3T3-El) was dropped on the BioOss(R), chitosan microgranules, TCP/chitosan microgranules and cultured for 1, 7 , 14, and 28 days. Scanning electron microscopic observation was done after 7 days of culture and light microscopic examination was done after 28 days of culture. PDGF-BB release from the microgranules was tested. Rabbit calvarial defects(8 mm in diameter) were formed and chitosan, TCP/chitosan, PDGF-TCP/chitosan microgranules, and BioGran(R) were grafted to test the ability of new bone formation. At SEM view, the size of prepared microgranules was 250-1000 um and TCP powders were observed at the surface of TCP/chitosan microgranules. TCP powders gave roughness to the granules and this might help the attachment of osteoblasts. The pores formed between microgranules might be able to allow new bone ingrowth and vascularization. There were no significant differences in cell number among BioOss(R) and two microgranules at 28 day. Light and scanning electron microscopic examination showed that seeded osteoblastic cells were well attached to TCP/chitosan microgranules and proliferated in a multi-layer. PDGF-BB released from TCP/chitosan microgranules was at therapeutic concentration for at least 1 week. In rabbit calvarial defect models, PDGF-TCP/chitosan microgranules grafted sites showed thicker bone trabeculae pattern and faster bone maturation than others. These results suggested that the TCP/chitosan microgranules showed the potential as bone substitutes.

Poly-glycolic Acid(PGA)와 우태아 혈청(Fetal bovine serum, FBS)의 혼합물이 가토에서 골형성에 미치는 영향 (The Effects of the Mixture of Fetal Bovine Serum and Poly-glycolic acid in Rabbit Calvarial Model)

  • 성용덕;김용하;문영미;김갑중;김연정;최식영
    • Archives of Plastic Surgery
    • /
    • 제34권3호
    • /
    • pp.298-304
    • /
    • 2007
  • Purpose: This study was undertaken to investigate the osteogenic induction potential of PGA & FBS mixture on a calvarial defect in the rabbit. Methods: Twenty New zealand white rabbit, weighing from 3.5-4kg were allocated into each of the three groups. Four 8 mm sized bone defects were made on the parietal bone by drilling. In group I, the bony defects were implanted with $50{\mu}m$ thickness film containing mixture of PGA and FBS. In group II, with PGA only film, & in group III, the bony defects were left with no implants. Results were evaluated by using morphologic change, radiographic study, biochemical study and histologic examination at 1 week (group I n=7, group II n=7, group III n=14), 2 weeks (group I n=6, group II n=6, group III n=12) and 3 weeks (group I n=7, group II n=7, group III n=14) following implantation. Results: In the morphologic & radiographic study, the formation and corticalization of callus were observed earlier in group I than in groups II and III (p < 0.05). In histological examination, group I showed more abundant and faster new bone formation than in group II and III. In biochemical analysis, group I displayed more activity than in group II and III. Group I also showed more abundant osteopontin, osteocalcin than groups II and III. Conclusion: In conclusion, the results demonstrate that the mixture of PGA and FBS has an effect on osteoblastic formation in the rabbit model. It is considered that further evaluation of long term results on resorption, immunologic tissue reaction and response of applied mixture in the human model will be needed.

생체 유래 골 이식재(OCS-B)의 안전성 및 유효성에 관한 연구 (A study on the safety and efficacy of bovine bone-derived bone graft material(OCS-B))

  • 박호남;한상혁;김경화;이상철;박윤정;이상훈;김태일;설양조;구영;류인철;한수부;정종평
    • Journal of Periodontal and Implant Science
    • /
    • 제35권2호
    • /
    • pp.335-343
    • /
    • 2005
  • Inorganic bovine bone mineral has been widely researched as bone substitution materials in orthopedic and oral and maxillofacial application. OCS-B(NIBEC, Korea) is newly-developed inorganic bovine bone mineral. The aim of this study is to evaluate the safety and efficacy of bovine bone-derived bone graft material(OCS-B). Micro-structure of newly-developed inorganic bovine bone mineral(OCS-B) was analyzed by scanning electron microscope(SEM). Round cranial defects with eight mm diameter were made and filled with OCS-B in rabbits. OCS-B was inserted into femoral quadrant muscle in mouse. In scanning electron microscope, OCS-B was equal to natural hydroxyapatite. Rabbits were sacrificed at 2 weeks and 4 weeks after surgery and mice were sacrificed at 1 week and 2 weeks after surgery. Decalcified specimens were prepared and observed by microscope. In calvarial defects, osteoid and new bone were formed in the neighborhood of OCS-B at 2 weeks after surgery. And at 4 weeks after surgery osteoid and new bone bridge formed flourishingly. No inflammatory cells were seen on the surface of OCS-B at 1 week and 2 weeks in mouse experimental group. It is concluded that newly-developed inorganic bovine bone mineral(OCS-B) is a flourishing bone-forming material and biocompatible material.