• Title/Summary/Keyword: Calorific

Search Result 298, Processing Time 0.032 seconds

Measurement of Calorific Value Using Flame Calorimeter (전자 소자를 이용한 연소열 측정)

  • Lim, Ki-Won;Jun, Jin-Young;Lee, Byeong-Jun
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.3
    • /
    • pp.40-47
    • /
    • 2010
  • Calorific value of mixed gas, like liquefied natural gas (LNG), is strongly depends on its compositions which are affected by the mining place and producing time. The variation in calorific value have an direct influence on the combustion characteristics and performances of boiler, burner, vehicle, power plants etc. Thus, developing experimental method to measure exact calorific value is becoming an issue in the related industrial fields. Flame calorimeter is developed to get calorific value at the dynamic equilibrium state using electric substitution method. Refrigerant-11 carries heat from combustor and/or heater to the Peltier elements which pumped it out to the cooling water. It is found out that error in the measured calorific value of methane is 2.86% compared with the theoretical one. Developed design technique and the experimental data will be applied to design the national standard gas calorific value measuring apparatus.

Development of Calorific Values and Carbon Emission Factors for Petroleum Energy in Korea from 2012 to 2013 (2012~2013년 국내 석유계 에너지원의 열량 및 탄소배출계수 개발)

  • Lim, Wan-Gyu;Doe, Jin-Woo;Kang, Hyung-Kyu;Ha, Jong-Han;Lee, Sang-Sup
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.4
    • /
    • pp.301-310
    • /
    • 2014
  • Country-specific data for net calorific values and carbon emission factors requires for a higher tier estimate of greenhouse gas emissions in the energy sector. The objective of this study is to develop country-specific net calorific values and carbon emission factors for petroleum energy produced in Korea. Calorific values and carbon contents of the fuels were measured using the oxygen bomb calorimeter method and the CHN elemental analysis method, respectively. Sulfur and hydrogen contents, which were used to calculate the net calorific value, were also measured and then net calorific values and carbon emission factors were determined based on the measurement results. The net calorific values and carbon emission factors determined for the petroleum produced in Korea 2012 and 2013 were compared to those in the 2006 IPCC Guidelines. Most of the values were different compared with the default values of the 2006 IPCC Guidelines although those were placed within their upper and lower limits. Time series analysis results showed inconsistent seasonal variation for the net calorific values and carbon emission factors.

Comparative Analysis of Gross Calorific Value by Determination Method of Lignocellulosic Biomass Using a Bomb Calorimeter

  • Ju, Young Min;Ahn, Byung-Jun;Lee, Jaejung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.864-871
    • /
    • 2016
  • This study was conducted to compare and analyze gross calorific values from measurement methods of lignocellulosic biomass and calculation data from calorific value prediction models based on the elemental content. The deviation of Liriodendron tulipifera (LT) and Populus euramericana (PE) was shown 7.7 cal/g and 7.4 cal/g respectively in palletization method, which are within repeatability limit 28.8 cal/g of ISO FDIS 18125. In the case of Thailand charcoal (TC), nontreatment method and palletization method was satisfied with repeatability limit as 22.8 cal/g and 8.8 cal/g respectively. Seowon charcoal (SC) was shown deviation of 11.4 cal/g in nontreatment method, because the density and chemical affinity of sample increases as the carbon content increases from heat treatment at high temperature in the case of TC and SC. In addition, after applying the elemental content of each of these samples to the calorific value prediction models, the study found that Model Equation (3) was relatively consistent with measured calorific values of all these lignocellulosic biomass. Thus, study about the correlation between the density and size of particle should be conducted in order to select the measurement method for a wide range of solid biofuels in the future.

Design for Landfill Gas Appliation by Low Calorific Gas Turbine and Green House Optimization Technology (Low Calorific Gasturbine 매립지 적용 및 유리온실 운용기술 설계)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Lee, Jung-Bin;Rhim, Sang-Gyu
    • New & Renewable Energy
    • /
    • v.6 no.2
    • /
    • pp.27-32
    • /
    • 2010
  • Low Calorific Gas Turbine (LCGT) has been developed as a next generation power system using landfill gas (LFG) and biogas made from various organic wastes, food Waste, waste water and Livestock biogas. Low calorific fuel purification by pretreatment system and carbon dioxide fixation by green house system are very important design target for the optimum applications of LCGT. Main troubles of Low Calorific Gas Turbine system was derived from the impurities such as hydro sulfide, siloxane, water contained in biogas. Even if the quality of the bio fuel is not better than natural gas, LCGT may take low quality gas fuel and environmental friendly power system. The mechanical characterisitics of LCGT system is a high energy efficiency (>70%), wide range of output power (30 kW - 30 MW class) and very clean emission from power system (low NOx). A green house has been designed for four different carbon dioxide concentration from ambient air to 2000 ppm by utilizing the exhaust gas and hot water from LCGT system. LCGT is expected to contribute achieving the target of Renewable Portfolio Standards (RPS).

A Study on the Characteristics of Dewaterability and Calorific Value of Sewage Sludge by Mixing Waste Wood (폐목재 혼합에 따른 하수슬러지 탈수성 및 발열량 특성 연구)

  • Jin, Yong Gyun;Jo, Eun Ji;Hyun, Wan Su;Han, Hyun Goo;Min, Sun Ung;Yeo, Woon Ho
    • Journal of Urban Science
    • /
    • v.8 no.1
    • /
    • pp.45-49
    • /
    • 2019
  • The land treatment of sewage sludge is necessary because sewage sludge is increasing year by year. Therefore the research of sewage sludge solidification is underway as one of the land treatment methods. However, the problem with existing sewage sludge solidification is that the moisture content of sewage sludge is high and the dewaterability is low. Because of high drying cost the efficiency of energy production is low and the calorific value is insufficient. So the disposer is supplied with a filtration and caloric aid for improving dewaterability and calorific value. In this study, it is aimed to improve the fuel value of sewage sludge by confirming the feasibility of waste wood as a filtration and caloric aid. The dewaterability was measured by CST-test and the calorific value was measured by bomb calorimeter. As a result the dewaterability and calorific value are improved in all of the samples. The dewaterability was improved as the waste wood was added in the sewage sludge. By adjusting the waste wood adding rate into the sewage sludge the dewaterability and calorific value of sewage sludge will be improved. This study confirmed possibility of the waste wood used as filtration and caloric aid.

Component Characteristics of Xanthoceras sorbifolium Seeds for Bioenergy Plant Utilization

  • Lee, Hyunseok;Yi, Jaeseon;An, Chanhoon;Kim, Minsu;Lee, Jeonghoon
    • Journal of Forest and Environmental Science
    • /
    • v.31 no.4
    • /
    • pp.272-279
    • /
    • 2015
  • Xanthoceras sorbifolium is considered as bio-energy crops owing to the high oil content from kernel. This study was performed to analyze calorific value, crude ash content, ultimate ratio, crude lipid and fatty acid composition among seed sources. Calorific values ranged from $4,526.0\;cal\;g^{-1}$ to $7,377.2\;cal\;g^{-1}$ in seeds and kernels showed the highest value. Calorific values and crude ash contents were observed as significant difference among plantations and/or individuals (p>0.05). Kernel from SD-F plantation showed the highest calorific value and lower crude ash content. C content comprised 63.4%, the highest levels was detected from SD-F (64.8%). Crude lipid content in kernel observed as 54.5 g $100\;g^{-1}$ from SD-F. In contrast it was determined the lowest value from LN-JARS as 46.5 g $100\;g^{-1}$. The fatty acid composition of kernel was determined to those of oleic acid (31.3%) and linoleic acid (38.1%) from SD-F and LN-JARS. These results will be offered to useful information for breeding materials selection.

Estimating the heating value of major coniferous trees by moisture content (주요 침엽수종의 함수율 변화에 따른 발열량 예측)

  • Hwang, Jin-Sung;Oh, Jae-Heun;Ji, Byoung-Yun;Kim, Pan-Seog;Lee, Joon-Woo;Cha, Du-Song
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.4
    • /
    • pp.619-624
    • /
    • 2011
  • The calorific value is the most significant factor in woody biomass utilization. We measured the calorific value by the wood parts (debarked parts and bark) and moisture content for 3 major tree species (Larix kaempferi, Pinus koraiensis, and Pinus rigida). Results showed that the calorific value decreased exponentially as the moisture content increased regardless of tree species and the wood parts. The bark had higher calorific values than woody parts (de-barked parts). In addition, Pinus koraiensis had the highest calorific values among 3 study species.

Water Scrubbing of Carbon Dioxide for Improving Calorific Values of Biogass (수세정에 의한 바이오가스 중 이산화탄소의 제거 효율)

  • Shim, Jae-Hoon;Hong, Seong-Gu;Kwun, Soon-Kuk
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.598-603
    • /
    • 2005
  • Biogas produced from anaerobic digestion processes has about 60% of methane and about 40% of carbon dioxide. Raw biogas can be used in internal combustion engines either spark ignition or diesel engines. Since the gas has relatively low calorific values, engine power also is lower than rated power values. Modified engines or biogas-specific engines have been utilized in order to increase efficiency. Another option is gas cleansing for increasing its calorific values. A couple of European countries adopted this approach in using biogas for one of transportation fuels, such as $CO_2$ scrubbing with water or special solutions. This study reports the results of water scrubbing for reducing $CO_2$ concentration. In 2.5m-high PVC pipe accepting water, $CO_2$ reduction rates were investigated. When flow rate of $CO_2$ and air mixture was about 5 LPM, $CO_2$ concentration was decreased up to 70%. Higher calorific biogas through water scrubbing is expected to be applied to various commercial engines without costly modification.

  • PDF

A Study on the Calorific Value of Insulated Gang-form in Winter (동절기 단열갱폼의 발열량 변화 측정에 관한 연구)

  • Kang, In-Seon;Won, Joon-Yuen;Kim, Tae-Hui;Kim, Seong-Deok;Choi, Seok;Nam, Kyung-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.135-136
    • /
    • 2017
  • This paper examines the efficiency of the application of conventional and insulated gang forms for curing and protection of concrete by comparing the amount of electric energy required therefor. In addition, a thermal vision camera was used to identify heat loss from surfaces of the gang forms after each placement of concrete. Experimental results, show that the heat loss at the submerged temperature was large at the submerged surface due to the large calorific value at the surface of the mold. The insulated gang form had some heat loss in the horizontal bars. In the case of adiabatic reforming, the pattern shows a constant calorific value over time. In conclusion, the insulation performance is better than that of general gang form.

  • PDF

Design for Landfill Gas Application by Low Calorific Gas Turbine and Green House Optimization Technology (Low Calorific Gasturbine 매립지 적용 및 유리온실 운용기술 설계)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Lee, Jung-Bin;Rhim, Sang-Gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.244.1-244.1
    • /
    • 2010
  • Bio energy development by using Low Calorific Gas Turbine(LCGT) has been developed for New & Renewable energy source for next generation power system, low fuel and operating cost method by using the renewable energy source in landfill gas (LFG), Food Waste, water waste and Livestock biogas. Low calorific fuel purification by pretreatment system and carbon dioxide fixation by green house system are very important design target for evaluate optimum applications for bio energy. Main problems and accidents of Low Calorific Gas Turbine system was derived from bio fuel condition such as hydro sulfide concentration, siloxane level, moisture concentration and so on. Even if the quality of the bio fuel is not better than natural gas, LCGT system has the various fuel range and environmental friendly power system. The mechanical characterisitics of LCGT system is a high total efficiency (>70%), wide range of output power (30kW - 30MW class) and very clean emmission from power system (low NOx). Also, we can use co-generation system. A green house designed for four different carbon dioxide concentration from ambient air to 2000 ppm by utilizing the exhaust gas and hot water from LCGT system. We look forward to contribute the policy for Renewable Portfolio Standards(RPS) by using LCGT power system.

  • PDF