• Title/Summary/Keyword: Calli

Search Result 426, Processing Time 0.024 seconds

Callus formation and multiple shoot induction of Hovenia dulcis Thunb. (헛개나무의 캘러스 형성 및 multiple shoot 유기)

  • Eom, Seung-Hee;Kang, Won-Hee;Shin, Dong-Yong;Heo, Kwon;Choi, Won-Cheol;Lee, Hyeon-Yong;Yu, Chang-Yeon
    • Korean Journal of Plant Resources
    • /
    • v.15 no.3
    • /
    • pp.237-242
    • /
    • 2002
  • Loaves, stems, cotyledons, and roots of Hovenia dulcis Thunb grown in test tube were cultured on media containing different concentrations of single or combined growth regulators. In MS media containing 2mg/ι BA, the shoot formation rate was 95.5% and it was the highest frequency of shoot formation. MS media showed most efficiency in the shoot formation at 0.01mg/ι TDZ for the callus formation, but the color of callus changed to brown at a higher concentration of TDZ. Callus formation was 89.% at 0.5mg/ 2.4-D, but IAA, IBA, and NAA were not effective on the formation of callus. Calli were formed only on wound area when IAA, IBA, and NAA were added into MS media. Combined growth regulators (BA + auxin) were more effective in roots and nodes than leaves and cotyledons on the formation of shoot. More than 97% of shoot formation was obtained on MS media containing BA and auxin. For the production of multiple shoot, nodes of Hovenia dulcis were used and effect of growth regulators on the formation of multiple shoot was evaluated on MS media. Highest shoots (5.3) of Hovenia dulcis were induced on MS media supplied with 0.1mg/ι BA and 0.1mg/ι NAA, and an average of 6.4 shoots per explant were obtained in 1/2 MS media containing same concentration and growth regulators. An average of 7 shoots per explant after 4 weeks of culture from nodes of Hovenia dulcis was produced on a woody plant medium(WPM) containing 0.1mg/ι BA and 0.1mg/ι NAA. Shoot length was 6.0 cm in average.

Generation of Transgenic Rice without Antibiotic Selection Marker through Agrobacterium-mediated Co-transformation System (아그로박테리움 동시 형질전환 시스템을 통한 항생제 선발 마커가 없는 형질전환벼의 생산)

  • Park, Soo-Kwon;Kwon, Tack-Min;Lee, Jong-Hee;Shin, Dong-Jin;Hwang, Woon-Ha;Song, You-Chun;Cho, Jun-Hyun;Nam, Min-Hee;Jeon, Seung-Ho;Lee, Sang-Yeol;Park, Dong-Soo
    • Journal of Life Science
    • /
    • v.22 no.9
    • /
    • pp.1152-1158
    • /
    • 2012
  • Development of transgenic plant increasing crop yield or disease resistance is good way to solve the world food shortage. However, the persistence of marker genes in crops leads to serious public concerns about the safety of transgenic crops. In the present paper, we developed marker-free transgenic rice inserted high molecular-weight glutenin subunit (HMW-GS) gene ($D{\times}5$) from the Korean wheat cultivar 'Jokyeong' using Agrobacterium-mediated co-transformation method. Two expression cassettes comprised of separate DNA fragments containing only the $D{\times}5$ and hygromycin resistance (HPTII) genes were introduced separately into Agrobacterium tumefaciens EHA105 strain for co-infection. Each EHA105 strain harboring $D{\times}5$ or HPTII was infected into rice calli at a 3: 1 ratio of EHA105 with $D{\times}5$ gene and EHA105 with HPTII gene expressing cassette. Then, among 66 hygromycin-resistant transformants, we obtained two transgenic lines inserted with both the $D{\times}5$ and HPTII genes into the rice genome. We reconfirmed integration of the $D{\times}5$ and HPTII genes into the rice genome by Southern blot analysis. Wheat $D{\times}5$ transcripts in $T_1$ rice seeds were examined with semi-quantitative RT-PCR. Finally, the marker-free plants containing only the $D{\times}5$ gene were successfully screened at the $T_1$ generation. These results show that a co-infection system with two expression cassettes could be an efficient strategy to generate marker-free transgenic rice plants.

Development of Marker-free Transgenic Rice Expressing the Wheat Storage Protein, Glu-1Dy10, for Increasing Quality Processing of Bread and Noodles (빵과 면의 가공적성 증진을 위한 밀 저장단백질 Glu-1Dy10을 발현하는 마커프리 형질전환 벼 개발)

  • Park, Soo-Kwon;Shin, DongJin;Hwang, Woon-Ha;Hur, Yeon-Jae;Kim, Tae-Heon;Oh, Se-Yun;Cho, Jun-Hyun;Han, Sang-Ik;Lee, Seung-Sik;Nam, Min-Hee;Park, Dong-Soo
    • Journal of Life Science
    • /
    • v.24 no.6
    • /
    • pp.618-625
    • /
    • 2014
  • Rice flour is used in many food products. However, dough made from rice lacks extensibility and elasticity, making it less suitable than wheat for many food products such as bread and noodles. The high-molecular weight glutenin subunits (HMW-GS) of wheat play a crucial role in determining the processing properties of the wheat grain. This paper describes the development of marker-free transgenic rice plants expressing a wheat Glu-Dy10 gene encoding the HMG-GS from the Korean wheat cultivar 'Jokyeong' using Agrobacterium-mediated co-transformation. Two expression cassettes, consisting of separate DNA fragments containing Glu-1Dy10 and hygromycin phosphotransferase II (HPTII) resistance genes, were introduced separately into Agrobacterium tumefaciens EHA105 for co-infection. Each EHA105 strain harboring Glu-1Dy10 or HPTII was infected into rice calli at a 3: 1 ratio of Glu-1Bx7 and HPTII. Among 290 hygromycin-resistant $T_0$ plants, we obtained 29 transgenic lines with both the Glu-1Dy10 and HPTII genes inserted into the rice genome. We reconfirmed the integration of the Glu-1Dy10 gene into the rice genome by Southern blot analysis. Transcripts and proteins of the Glu-1Dy10 in transgenic rice seeds were examined by semi-quantitative RT-PCR and Western blot analysis. The marker-free plants containing only the Glu-1Dy10 gene were successfully screened in the $T_1$ generation.

Effects of Explant Parts and Plant Growth Regulators on the in vitro Propagation of Lycoris squamigera (상사화의 기내증식에 미치는 배양부위와 생장조절물질의 영향)

  • Eun, Jong-Seon;Kim, Young-Seon;Park, Jong-Suk;JIN, Song Nan;CAO, Hounan
    • Journal of Plant Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.179-183
    • /
    • 2002
  • This study was carried out to investigate the influence of medium composition for in vitro mass propagation of Lycoris squamigera Max. After the disks of short stems, segments of leaf within bulb and scale were cultured on MS basal medium supplemented with various plant growth regulators, they were examined for the extent of callus formation, shoot and root regeneration. In the culture of stem disks, adventitious shoots were regenerated from the basal tissue of bulb scales, and combined medium of 1.0 mg/L 2,4-D or NAA+2.0 mg/L BA or kinetin showed the the best response and 4∼6 shoots per explant formed. In the culture of leaf segments within bulbs, both MS medium supplemented with 1.0 mg/L NAA+2.0 mg/L TDZ and with 1.0 mg/L 2,4-D+1.0∼2.0 mg/L BA were produced callus profusely on the base of leaf tissue and 3∼6 shoots were regenerated per explant. In the scale segments culture, calli were produced on the basal tissue on medium with 1.0 mg/L 2,4-D+1.0∼2.0 mg/L BA. The best result were shown on MS medium with 1.0 mg/L NAA+2.0 mg/L TDZ, and 1.0 mg/L 2,4-D+1.0∼2.0 mg/L BA. Maximum number of regenerated shoots was up to 10∼12. Adventitious root formation from explants were formed profusely on MS medium with 1.0 mg/L NAA+2.0 mg/L kinetin. The most desirable method for mass propagation of plantlets was the shoot regeneration from scale segments then subsequently subcultured on medium for rooting.

Development of Marker-free Transgenic Rice for Increasing Bread-making Quality using Wheat High Molecular Weight Glutenin Subunits (HMW-GS) Gene (밀 고분자 글루테닌 유전자를 이용하여 빵 가공적성 증진을 위한 마커 프리 형질전환 벼의 개발)

  • Park, Soo-Kwon;Shin, DongJin;Hwang, Woon-Ha;Oh, Se-Yun;Cho, Jun-Hyun;Han, Sang-Ik;Nam, Min-Hee;Park, Dong-Soo
    • Journal of Life Science
    • /
    • v.23 no.11
    • /
    • pp.1317-1324
    • /
    • 2013
  • High-molecular weight glutenin subunits (HMW-GS) have been shown to play a crucial role in determining the processing properties of the wheat grain. We have produced marker-free transgenic rice plants containing a wheat Glu-1Bx7 gene encoding the HMG-GS from the Korean wheat cultivar 'Jokyeong' using the Agrobacterium-mediated co-transformation method. The Glu-1Bx7-own promoter was inserted into a binary vector for seed-specific expression of the Glu-1Bx7 gene. Two expression cassettes comprised of separate DNA fragments containing only Glu-1Bx7 and hygromycin phosphotransferase II (HPTII) resistance genes were introduced separately to the Agrobacterium tumefaciens EHA105 strain for co-infection. Each EHA105 strain harboring Glu-1Bx7 or HPTII was infected to rice calli at a 3:1 ratio of Glu-1Bx7 and HPTII, respectively. Then, among 216 hygromycin-resistant $T_0$ plants, we obtained 24 transgenic lines with both Glu-1Bx7 and HPTII genes inserted into the rice genome. We reconfirmed integration of the Glu-1Bx7 gene into the rice genome by Southern blot analysis. Transcripts and proteins of the wheat Glu-1Bx7 were stably expressed in the rice $T_1$ seeds. Finally, the marker-free plants harboring only the Glu-1Bx7 gene were successfully screened at the $T_1$ generation.

In vitro micropropagation of radish (Raphanus sativus L.) using callus induction and plant regeneration (캘러스 유기와 식물체 재분화를 이용한 무의 기내 대량증식)

  • You Kyoung Kim;Sug Youn Mo;Su Bin Choi;Han Yong Park
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.155-162
    • /
    • 2023
  • Radish (Raphanus sativus L.), a root vegetable grown worldwide, is consumed in several ways. In the cross between parental lines to produce F1 seeds of radish, the problem of low purity may arise because of pollen contamination. Therefore, we aimed to establish conditions for callus induction and regeneration so that in vitro cultured plants could be used for the propagation of stock seeds. The most effective hormone combination containing various concentrations of 2,4-D, TDZ, and kinetin was selected for callus induction using radish hypocotyl, and the induced calli were transferred to two types of hormone media to investigate the optimal conditions for shoot regeneration of the callus. The combination of 1 mg/L 2,4-D + 0.05 mg/L kin was the most effective for callus induction of RA2 and RA10, 1 mg/L 2,4-D + 0.1 mg/L kin + 0.025 mg/L TDZ of RA4, and 1 mg/L 2,4-D + 0.2 mg/L kin of RA30. Shoot regeneration of the RA4 callus occurred in both shoot regeneration media, but the frequency was much higher in the 5H+1B medium (1 mg/L NAA + 0.1 mg/L 2,4-D + 1 mg/L IPA + 0.02 mg/L GA3 + 2 mg/L zeatin + 1 mg/L BA). For the in vitro micropropagation of radish, the conditions selected in this study can assist in the propagation and maintenance of stock seeds to produce F1 seeds.