• Title/Summary/Keyword: Call Blocking Probability

Search Result 119, Processing Time 0.024 seconds

A Study on the Channel Assignment Scheme on Enhancing New Call Service in Wireless Network (무선 네트워크에서 신규 호 서비스 향상을 위한 채널할당에 관한 연구)

  • 임영훈
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.9A
    • /
    • pp.1282-1289
    • /
    • 2000
  • In this paper we propose a Fractional Channel Reservation (FCS) scheme to satisfy a desired handoof dropping probability and to reduce the blocking probability of new calls using mobility characteristics and incoming handoff rate in mobile communication networks. When the ratio of the handoff call arrival rate is less then the ratio of the new call arrival rete, the proposed scheme is capable of determining the number of the guard channels which can guarantee the Quality of Service(QoS) in terms of the request handoff dropping probability and allocating dynamically the wireless channels the new calls according to the rest of the guard channels to reduce the new call blocking probability. Also we perform mathematical analysis and simulation to evaluate the performance of proposed scheme and compare to conventional guard channel scheme in terms of dropping probability blocking probability and the utilization efficiency of wireless channels.

  • PDF

Admission Control Policy Heuristic Algorithm for fairness of Call Blocking Probability in Differentiated Service Networks (차별화된 서비스를 갖는 인터넷 망에서 호 블로킹 확률의 공평성을 위한 수락 제어 정책 Heuristic 알고리즘 연구)

  • Min, Jun-Ki;Rhea, Woo-Seop;Chung, Jong-Soo
    • Journal of Internet Computing and Services
    • /
    • v.6 no.3
    • /
    • pp.121-128
    • /
    • 2005
  • Recently, as the research of effective resource management for supporting of various next generation internet service, the admission control mechanisms using the dynamic provisioning methods in differentiated service networks are studied. However, even though admission control mechanism is applied to the network, there exits the unfairness of call blocking probability among the different bandwidth requested services. In this paper, we propose the new admission control policy heuristic algorithm that provides fairness of call blocking probability between the large bandwidth requested service and the small bandwidth requested service. The simulation results show that the proposed algorithm provides not only blocking probability fairness but also high bandwidth utilization.

  • PDF

Performance Evaluation of Pico Cell Range Expansion and Frequency Partitioning in Heterogeneous Network (Heterogeneous 네트워크에서 Pico 셀 범위 확장과 주파수 분할의 성능 평가)

  • Qu, Hong Liang;Kim, Seung-Yeon;Ryu, Seung-Wan;Cho, Choong-Ho;Lee, Hyong-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8B
    • /
    • pp.677-686
    • /
    • 2012
  • In the presence of a high power cellular network, picocells are added to a Macro-cell layout aiming to enhance total system throughput from cell-splitting. While because of the different transmission power between macrocell and picocell, and co-channel interference challenges between the existing macrocell and the new low power node-picocell, these problems result in no substantive improvement to total system effective throughput. Some works have investigated on these problems. Pico Cell Range Expansion (CRE) technique tries to employ some methods (such as adding a bias for Pico cell RSRP) to drive to offload some UEs to camp on picocells. In this work, we propose two solution schemes (including cell selection method, channel allocation and serving process) and combine new adaptive frequency partitioning reuse scheme to improve the total system throughput. In the simulation, we evaluate the performances of heterogeneous networks for downlink transmission in terms of channel utilization per cell (pico and macro), call blocking probability, outage probability and effective throughput. The simulation results show that the call blocking probability and outage probability are reduced remarkably and the throughput is increased effectively.

A New Frame Offset Assignment Algorithm For Reducing the Soft Handoff Blocking Probability Due to Lack of Frame Offset Capacity (Frame Offset의 불일치로 인하여 발생하는 Soft Handoff Blockig Probability를 줄이기 위한 새로운 Frame Offset Assignment Algorithm)

    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.9B
    • /
    • pp.1624-1630
    • /
    • 1999
  • Code division multiple access (CDMA) is a promising air interface technique for cellular systems. When an MS (Mobile Station) moves to an adjacent cell, the handoff between the serving cell and the target cell is needed. Compared with the hard handoffs, the soft handoffs between two CDMA channels with the identical frequency assignments and frame offsets can provide a better quality of service by minimizing the undesirable ping pong phenomenon of back-and forth handoffs between two adjacent cells in conventional hard handoffs. For the soft handoff of a call to an adjacent cell to be successful, the adjacent cell should assign to the call the same frame offset as that being used in the original cell by the call. In this paper, considering the assignment states of the frame offsets of the adjacent cells, a frame offset assignment algorithm for the originated call is proposed. And analytic method for the handoff blocking probability due to the lack of the frame offset capacity is also presented to show the advantage of the proposed algorithm with respect to the soft handoff blocking probability.

  • PDF

Determination of a Time-Slot Switching-Point Considering Asymmetrical Traffic Features in TD-CDMA/TDD Systems

  • Cho, Ho-Shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.1A
    • /
    • pp.1-6
    • /
    • 2003
  • We propose a mathematical model to analyze the performance of TD-CDMA/TDD systems in terms of call blocking probability and then find the optimum time-slot switching-point at the smallest call blocking probability considering asymmetrical traffic load distribution for various kinds of service applications.

The Relation of Cell Scale and Call Connection Level for the VBR Trafac in the Wireless ATM Access Transport (무선 ATM 액세스 전달구조에서 VBR 트래픽에 대한 셀 스케일과 호 접속레벨간의 관계)

  • Lee Ha-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9B
    • /
    • pp.596-601
    • /
    • 2005
  • In this paper it is focused on the relation between CLR(Cell Loss Ratio) and blocking probability in the wireless ATM access transport. Traffic model of wireless ATH access transport is based on the cell scale, burst scale and call connection level. The CLR due to buffer overflow for wireless access node is derived for VBR traffic. The CLR due to transmission errors for wireless channel is derived. Using the CLR for both access node and wireless channel: the CLR of wireless ATM access transport is derived. The relation between CLR and blocking probability is analyzed for VBR traffic to evaluate performance of wireless ATM access transport.

A Novel Priority Call Admission Coneol Algorithm Based on Total Resource Requirements for CDMA Systems (CDMA시스템에서 전체 자원요구량에 근거한 새로운 우선권기반의 호 수락제어 알고리즘)

  • Park Shi quan;Park Yong wan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.12A
    • /
    • pp.1298-1308
    • /
    • 2004
  • CAC (Call Admission Control) schemes for different service class are studied in many Papers. A novel priority CAC algorithm, which gives priority to a same class call according to the total resource requirements is proposed and analyzed in this paper. The proposed algorithm provides a priority according to the total resource requirements other than only in a base station. If there are efficient residual resources in the system, it will accept all new calls. Otherwise, it will selectively accept these new calls according to the total resource requirements. The results show that the proposed algorithm provides better call blocking probability, outage probability and throughput than the conventional algorithm.

An Optimal Capacity Allocation Problem in Designing advanced Information Communication Processing System (대용량 통신처리시스템에서 사용자 이용성향과 ISDN를 고려한 망정합장치의 회선용량 분배에 관한 연구)

  • 김영일;김찬규;이영호;김영휘;류근호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.5B
    • /
    • pp.809-819
    • /
    • 2000
  • This paper deals with an optimal capacity allocation problem and performance analysis in Advanced Information Communication Processing System(AICPS). AICPS is a gateway system interconnection PSTN(Public Switched Telephone Network), ISDN(Intergrated Services Digital Network), PSDN(Packet Switched Data Network), internet, Frame Relay and ATM together. This study considers not only ISDN and Internet but also user behavior of On-line service which is analyzed by Markov process. A call blocking probability of TNAS and INAS is computed by Erlang's formula. Then, PNAS and WNAS's call blocking probability are computed by Stochastic knapsack modeling. The result is compared with result of simulation. Finally, we allocate an optimal capacity minimizing total call blocking probability.

  • PDF

An optimal link capacity problem of on-line service telecommunication networks (PSTN과 PSDN을 연결한 데이터 통신망의 회선할당에 관한 연구)

  • Kim, Byung-Moo;Lee, Young-Ho;Kim, Young-Hui;Kim, Yu-Hwan;Park, Seok-Ji;Kim, Joo-Sung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.2
    • /
    • pp.241-249
    • /
    • 1998
  • In this paper, we seek to find an optimal allocation of link capacity in a data communication network. The architecture of the data communication network considered in the study is an online-service network based on public switched telephone network(PSTN) and packet switched data network(PSDN). In designing the architecture of the network, we need to deal with various measures of quality of service(QoS). Two important service measures are the call blocking probability in PSTN and the data transfer delay time in PSDN. Considering the tradeoff between the call blocking probability and the data transfer delay time in the network, we have developed the optimal link capacity allocation model that minimizes the total link cost, while guarantees the call blocking probability and the data transfer delay time within an acceptable level of QoS. This problem can be formulated as a non-linear integer programming model. We have solved the problem with tabu search and simulated annealing methods. In addition, we have analyzed the sensitivity of the model and provided the insight of the model along with computational results.

  • PDF

Models for Internet Traffic Sharing in Computer Network

  • Alrusaini, Othman A.;Shafie, Emad A.;Elgabbani, Badreldin O.S.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.28-34
    • /
    • 2021
  • Internet Service Providers (ISPs) constantly endeavor to resolve network congestion, in order to provide fast and cheap services to the customers. This study suggests two models based on Markov chain, using three and four access attempts to complete the call. It involves a comparative study of four models to check the relationship between Internet Access sharing traffic, and the possibility of network jamming. The first model is a Markov chain, based on call-by-call attempt, whereas the second is based on two attempts. Models III&IV suggested by the authors are based on the assumption of three and four attempts. The assessment reveals that sometimes by increasing the number of attempts for the same operator, the chances for the customers to complete the call, is also increased due to blocking probabilities. Three and four attempts express the actual relationship between traffic sharing and blocking probability based on Markov using MATLAB tools with initial probability values. The study reflects shouting results compared to I&II models using one and two attempts. The success ratio of the first model is 84.5%, and that of the second is 90.6% to complete the call, whereas models using three and four attempts have 94.95% and 95.12% respectively to complete the call.