• Title/Summary/Keyword: Calibration technique

Search Result 707, Processing Time 0.028 seconds

Site Calibration for the Wind Turbine Performance Evaluation (풍력발전기 성능실증을 위한 단지교정 방법)

  • Nam, Yoon-Su;Yoo, Neung-Soo;Lee, Jung-Wan
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.49-57
    • /
    • 2002
  • The accurate wind speed information at the hub height of a wind turbine is very essential to the exact estimation of the wind turbine power performance testing. Several methods on the site calibration, which is a technique to estimate the wind speed at the wind turbine's hub height based on the measured wind data using a reference meteorological mast, are introduced. A site calibration result and the wind resource assessment for the Taekwanryung test site are presented using a one-month wind data from a reference meteorological mast and a temporal mast installed at the site of wind turbine. From this analysis, it turns out that the current location of the reference meteorological mast is wrongly determined, and the self-developed codes for the site calibration are working properly. Besides, an analysis on the uncertainty allocation for the wind speed correction using site calibration is performed.

  • PDF

Development of a Camera Self-calibration Method for 10-parameter Mapping Function

  • Park, Sung-Min;Lee, Chang-je;Kong, Dae-Kyeong;Hwang, Kwang-il;Doh, Deog-Hee;Cho, Gyeong-Rae
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.183-190
    • /
    • 2021
  • Tomographic particle image velocimetry (PIV) is a widely used method that measures a three-dimensional (3D) flow field by reconstructing camera images into voxel images. In 3D measurements, the setting and calibration of the camera's mapping function significantly impact the obtained results. In this study, a camera self-calibration technique is applied to tomographic PIV to reduce the occurrence of errors arising from such functions. The measured 3D particles are superimposed on the image to create a disparity map. Camera self-calibration is performed by reflecting the error of the disparity map to the center value of the particles. Vortex ring synthetic images are generated and the developed algorithm is applied. The optimal result is obtained by applying self-calibration once when the center error is less than 1 pixel and by applying self-calibration 2-3 times when it was more than 1 pixel; the maximum recovery ratio is 96%. Further self-correlation did not improve the results. The algorithm is evaluated by performing an actual rotational flow experiment, and the optimal result was obtained when self-calibration was applied once, as shown in the virtual image result. Therefore, the developed algorithm is expected to be utilized for the performance improvement of 3D flow measurements.

Evaluation of GSICS Correction for COMS/MI Visible Channel Using S-NPP/VIIRS

  • Jin, Donghyun;Lee, Soobong;Lee, Seonyoung;Jung, Daeseong;Sim, Suyoung;Huh, Morang;Han, Kyung-soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.1
    • /
    • pp.169-176
    • /
    • 2021
  • The Global Space-based Inter-Calibration System (GSICS) is an international partnership sponsored by World Meteorological Organization (WMO) to continue and improve climate monitoring and to ensure consistent accuracy between observation data from meteorological satellites operating around the world. The objective for GSICS is to inter-calibration from pairs of satellites observations, which includes direct comparison of collocated Geostationary Earth Orbit (GEO)-Low Earth Orbit (LEO) observations. One of the GSICS inter-calibration methods, the Ray-matching technique, is a surrogate approach that uses matched, co-angled and co-located pixels to transfer the calibration from a well calibrated satellite sensor to another sensor. In Korea, the first GEO satellite, Communication Ocean and Meteorological Satellite (COMS), is used to participate in the GSICS program. The National Meteorological Satellite Center (NMSC), which operated COMS/MI, calculated the Radiative Transfer Model (RTM)-based GSICS coefficient coefficients. The L1P reproduced through GSICS correction coefficient showed lower RMSE and Bias than L1B without GSICS correction coefficient applied. The calculation cycles of the GSICS correction coefficients for COMS/MI visible channel are provided annual and diurnal (2, 5, 10, 14-day), but long-term evaluation according to these cycles was not performed. The purpose of this paper is to perform evaluation depending on the annual/diurnal cycles of COMS/MI GSICS correction coefficients based on the ray-matching technique using Suomi-NPP/Visible Infrared Imaging Radiometer Suite (VIIRS) data as reference data. As a result of evaluation, the diurnal cycle had a higher coincidence rate with the reference data than the annual cycle, and the 14-day diurnal cycle was the most suitable for use as the GSICS correction coefficient.

Antenna Array Calibration for Digital Beamforming (디지털 빔 형성을 위한 배열 안테나 오차 보정)

  • Choi, Hee-Young;Park, Hyung-Geun;Kim, Young-Soo
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.501-505
    • /
    • 2003
  • There are many antenna array errors. They will distort the array beam pattern and result in an increased sidelobe level. A calibration technique is proposed for correcting the antenna array errors such as mutual coupling and unequal feeder characteristics. These are modeled as a matrix representing the interaction between the radiating elements. The matrix is estimated from the measured array response vectors. The antenna array errors are corrected by modifying the beamforming weight vector. It is verified by the electromagnetic simulation and experiment that the proposed technique reduces the sidelobe level and increases the antenna gain.

  • PDF

Rapid Analysis of Melamine Content in Powdered and Liquid Milk Using Fourier Transform Infrared Spectroscopy

  • Wang, Jun;Jun, Soo-Jin;Li, Qing X.
    • Food Science and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.1199-1203
    • /
    • 2009
  • Melamine is a chemical intermediate to manufacture amino resins and plastics, which cannot be used as food additive since it can cause kidney stones. A qualitative determination method of melamine residue in powdered and liquid milk was developed using Fourier transform infrared (FTIR) spectroscopic technique. The calibration sets consisted of 21 standard melamine solutions, in which 1% trichloroacetic acid aqueous solution and acetonitrile (3:1, v/v) were used as solvent. The model was validated using 10 standard melamine solutions which were unused to build up the calibration set. Infrared (IR) absorbance peaks specific to almost all chemical groups in melamine molecule were shown in the spectral range between 1,100 and 1,800/cm. Combined partial least squares (PLS)-$2^{nd}$ derivative calibration model coupled with mean centering (MC) mathematical enhancement showed the highest correlation coefficients ($R^2$>0.99). In brief, the FTIR technique can be used for quantitative analysis of melamine in milk samples.

Antenna Array Calibration for Digital Beamforming (디지털 빔 형성을 위한 배열 안테나 오차 보정)

  • 최희영;박형근;김영수;방승찬
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.2
    • /
    • pp.199-205
    • /
    • 2004
  • There are many antenna array errors. They will distort the array beam pattern and result in an increased sidelobe level. A calibration technique is proposed for correcting the antenna array errors such as mutual coupling and unequal feeder characteristics. These are modeled as a matrix representing the interaction between the radiating elements. The matrix is estimated from the measured array response vectors. The antenna array errors are corrected by modifying the beamforming weight vector. It is verified by the electromagnetic simulation and experiment that the proposed technique reduces the sidelobe level and increases the antenna gain.

A Switched Visual Servoing Technique Robust to Camera Calibration Errors for Reaching the Desired Location Following a Straight Line in 3-D Space (카메라 교정 오차에 강인한 3차원 직선 경로 추종을 위한 전환 비주얼 서보잉 기법)

  • Kim, Do-Hyoung;Chung, Myung-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.2
    • /
    • pp.125-134
    • /
    • 2006
  • The problem of establishing the servo system to reach the desired location keeping all features in the field of view and following a straight line is considered. In addition, robustness of camera calibration parameters is considered in this paper. The proposed approach is based on switching from position-based visual servoing (PBVS) to image-based visual servoing (IBVS) and allows the camera path to follow a straight line. To achieve the objective, a pose estimation method is required; the camera's target pose is estimated from the obtained images without the knowledge of the object. A switched control law moves the camera equipped to a robot end-effector near the desired location following a straight line in Cartesian space and then positions it to the desired pose with robustness to camera calibration error. Finally simulation results show the feasibility of the proposed visual servoing technique.

  • PDF

Testing and Self Calibration of RF Circuit using MEMS Switches

  • Kannan, Sukeshwar;Kim, Bruce;Noh, Seok-Ho;Park, Se-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.882-885
    • /
    • 2011
  • This paper presents testing and self-calibration of RF circuits using MEMS switches to identify process-related defects and out of specification circuits. We have developed a novel multi-tone dither test technique where the test stimulus is generated by modulating the RF carrier signal with a multi-tone signal generated using an Arbitrary Waveform Generator (AWG) with additive white Gaussian noise. This test stimulus is provided as input to the RF circuit and peak-to-average ratio (PAR) is measured at the output. For a faulty circuit, a significant difference is observed in the value of PAR as compared to a fault-free circuit. Simulation is performed for various circuit conditions such as fault-free as well as fault-induced and their corresponding PARs are stored in the look-up table. This testing and self-calibration technique is exhaustive and efficient for present-day communication systems.

  • PDF

Calibration technique of gimballed inertial navigation system using the velocity error initialization (속도오차 초기화를 이용한 김블형 관성항법시스템의 교정기법)

  • 김천중;박정화;박흥원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.860-863
    • /
    • 1996
  • In this paper, we formulate the extended Kalman filter for calibration of gimballed inertial navigation system (GINS) at a pure navigation mode with 1500 ft/sec initial velocity and compare its performance to the linear Kalman filter's by using Monte-Carlo analysis method. It has been shown that estimation performance of the extended Kalman filter is better than that of the linear Kalman filter.

  • PDF

Computer Based Three Phase Power Analysing System (3상 전력을 기반으로 한 시스템 해석 컴퓨터)

  • Wijesinghe, W.M.S.;Park, Young-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.675-676
    • /
    • 2008
  • The computer based three phase power analysing system has been developed as a traveling standard for onsite power calibration. The system is utilized with digital-to-analog converts which were synchronized each other. Using digital signal processing technique the software has been developed to calculate power parameters. The calibration system is fully traceable to national standard system and, accuracy allows the calibration of industrial power measurement systems.

  • PDF