• Title/Summary/Keyword: Calibration standard tube

Search Result 26, Processing Time 0.021 seconds

Evaluation of Methodology for the Measurement of VOCs in the Air by Adsorbent Sampling and Thermal Desorption with GC Analysis (흡착포집 및 열탈착/GC 분석에 의한 공기 중 휘발성 유기화합물의 측정방법론 평가)

  • 백성옥;황승만;박상곤;전선주;김병주;허귀석
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.2
    • /
    • pp.121-138
    • /
    • 1999
  • This study was carried out to evaluate the performance of a sampling and analytical methodology for the measurement of selected volatile organic compounds (VOCs) in the ambient air. VOCs were determined by the adsorbent tube sampling and automatic thermal desorption coupled with GC/FID and GC/MSD analysis. Target analytes were aromatic VOCs, including BTEX, 1,3,5-and 1,2,4,-trimethylbenzenes(TMBs), and naphthalene. The methodology was investigatedwith a wide range of performance criteria such as repeatability, linearity, lower detection limits, collection efficiency, thermal conditioning, breakthrough volume and calibration methods using internal and external standards. standards. Stability of samples collected on adsorbent tubes during storage was also investigated. In addition, the sampling and analytical method developed during this study was applied to real samples duplicately collected in various indoor and outdoor environments. Precisions for the duplicate samples and distributed volume samples appeared to be well comparable with the performance criteria recommended by USEPA TO-17. The audit accuracy was estimated by inter-lab comparison of both duplicate samples and standard materials between the two independent labs. The overall precision and accuracy of the method were estimated to be within 30% for major aromatic VOCs such as BTEX. This study demonstrated that the adsorbent sampling and thermal desorption method can be reliably applied for the measurement of BTEX in ppb levels frequently occurred in common indoor and ambient environments.

  • PDF

Measurement of Radon and its Daughters Concentration in Air (공기중 라돈 및 라돈 자핵종의 농도 측정)

  • Park, Y.W.;Ha, C.W.;Ro, S.G.
    • Journal of Radiation Protection and Research
    • /
    • v.14 no.2
    • /
    • pp.23-29
    • /
    • 1989
  • A Lucas cell was established and calibrated by using the double layer tube standard radon source. The calibration factors were 0.031$\pm$0.002 (pCi/l)/(cph/Cell) at room temperature, and 0.029$\pm$0.001 (pCi/l)/(cph/Cell) at $50^{\circ}C$. Radon and its daughters concentrations were measured in a room air for the demonstrating purpose. The concentrations of 222 Rn, $^{218}Po,\;224\;Pb,\;and\;^{214}Bi$ were 0.87, 0.53, 0.35 and 0.26 pCi/l. The total eqilibrium factor was around 0.40 and the WL is $3.33{\times}10^{-3}$, resulting in 30 mrem/yr at this place.

  • PDF

Development of Profile Technique for Steam Generator Tubes in Nuclear Power Plants Using $8{\times}1$ Multi-Array Eddy Current Probe ($8{\times}1$ 다중코일 와전류탐촉자를 이용한 원전 증기발생기 전열관 단면형상검사 기법 개발)

  • Nam, Min-Woo;Lee, Hee-Jong;Kim, Cheol-Gi
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.184-190
    • /
    • 2008
  • Various ECT techniques have been applied basically to assess the integrity of steam generator tithing in nuclear power plant. Among these techniques, the bobbin probe technique is applied generally to examine the volumetric flaws such as a crack-like defect and wear which is generally occurred on steam generator tubing, and additionally MRPC probe is used to examine closely tile top of tubesheet and bending regions due to the high possibility of cracking. Dent and bulge also may be formed on tube during installation process and operation of steam generator, but the dent and bulge indications greater than specific size criteria are recorded on examination report because these indications are not considered as flaw. These indications can be easily detected with bobbin probe and approximately sized with profile bobbin probe, but the size and shape can not be accurately verified. Accordingly, in this study, the $8{\times}1$ multi-array EC probe was designed to increase the measurement accuracy of the sectional profiling EC testing of tube. As a result, we would like to propose the application of $8{\times}1$ multi-array EC probe for the measurement of size and shape of profile change on steam generator tube in OPR-1000 nuclear power plant.

A study on the calibration characteristics of organic fatty acids designated as new offensive odorants by cryogenic trapping-thermal desorption technique (유기지방산 신규악취물질에 대한 저온농축 열탈착방식 (Thermal desorber)의 검량특성 연구)

  • Ahn, Ji-Won;Kim, Ki-Hyun;Im, Moon-Soon;Ju, Do-Weon
    • Analytical Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.488-497
    • /
    • 2009
  • In this study, analytical methodology for several organic fatty acids (OFA: propionic acid (PA), butyric acid (BA), isovaleric acid (IA), and valeric acid (VA)) designated as new offensive odorants in Korea (as of year 2010) was investigated along with some odorous VOCs (styrene, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, butyl acetate, and isobutyl alcohol). For this purpose, working standards (WS) containing all of these 13 compounds were loaded into adsorption tube filled with Tenax TA, and analyzed by gas chromatography (GC) system thermal desorber interfaced with. The analytical sensitivities of organic fatty acids expressed in terms of detection limit (both in absolute mass (ng) and concentration (ppb)) were lower by 1.5-2 times than other compounds (PA: 0.24 ng (0.16 ppb), BA: 0.19 ng (0.11 ppb), IA: 0.15 ng (0.07 ppb), and VA: 0.28 ng (0.13 ppb)). The precision of BA, IA, and VA, if assessed in terms of relative standard error (RSE), maintained above 5%, while the precison of other compounds were below 5%. The reproducibility of analysis improved with the aid of internal standard calibration (PA: $1.1{\pm}0.4%$, BA: $10{\pm}0.46$, IA; $12{\pm}0.3%$, VA: $4{\pm}0.1%$), respectively. The results of this study showed that organic fatty acid can be analyzed using adsorption tube and thermal desorber in a more reliable way to replace alkali absorption method introduced in the odor prevention law of the Korea Ministry of Environment (KMOE).

The study on the measurement of formaldehyde in saliva and urine by GC-MS (가스크로마토그래프-질량분석기에 의한 타액 및 뇨 중 포름알데하이드 분석법 연구)

  • Shin, Ho-Sang;Ahn, Hye-Sil
    • Analytical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.149-154
    • /
    • 2006
  • A gas chromatography-mass spectrometric method was developed for the determination of formaldehyde in urine and saliva. In a 20 mL glass tube, 0.2 mL of urine or saliva was taken. Further, 1.8 mL of 0.1 M HCl, 0.1 mL of 2,000 mg/L 2,4-dinitrophenyl hydrazine and $20{\mu}l$ of 500 mg/L acetone-$d_6$ as internal standard were added in the tube and sealed tightly with cap. The solution was shaken for 20 min at room temperature and extracted using 4 mL of toluene. The extract was concentrated and redissolved with $100{\mu}l$ of acetonitrile, and then measured by gas chromatography-mass spectrometer (selected ion monitoring). The detection limit was 2.0 ng/mL and 0.5 ng/mL in saliva and urine, respectively. The calibration curves showed good linearity with r = 0.997 and 0.998 for saliva and urine, respectively. The method was used to analyze formaldehyde in rat urine after oral exposure. The developed method may be use ful to the monitoring for formaldehyde exposure in human.

Determination of Betaine in Fructus Lycii Using Hydrophilic Interaction Liquid Chromatography with Evaporative Light Scattering Detection

  • Shin, Hyun-Du;Suh, Joon-Hyuk;Kim, Jung-Hyun;Lee, Hye-Yeon;Eom, Han-Young;Kim, Un-Yong;Yang, Dong-Hyug;Han, Sang-Beom;Youm, Jeong-Rok
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.553-558
    • /
    • 2012
  • A simple new method was developed for the determination of betaine in Fructus Lycii using hydrophilic interaction liquid chromatography with evaporative light scattering detection (HILIC-ELSD). Good chromatographic separation and reasonable betaine retention was achieved on a Kinetex HILIC column ($2.1{\times}100mm$, $2.6{\mu}m$) packed with fused-core particle. The mobile phase consisted of (A) acetonitrile and (B) 10 mM ammonium formate (pH 3.0)/acetonitrile (90/10, v/v). It was used with gradient elution at a flow rate of 0.7 mL/min. The column temperature was set at $27.5^{\circ}C$ and the injection volume was $10{\mu}L$. The ELSD drift tube temperature was $50^{\circ}C$ and the nebulizing gas (nitrogen) pressure was 3.0 bar. Stachydrine, a zwitterionic compound, was used as an internal standard. Calibration curve over $10-250{\mu}g/mL$ showed good linearity ($R^2$ > 0.9992) and betaine in the 70% methanol extract of Fructus Lycii was well separated from other peaks. Intraand inter-day precision ranged from 1.1 to 3.0% and from 2.4 to 5.3%, respectively, while intra- and inter-day accuracy ranged from 100.0 to 107.0% and from 94.3 to 103.9%, respectively. The limit of quantification (LOQ) was $10{\mu}g/mL$ and the recoveries were in the range of 98.2-102.7%. The developed HILIC-ELSD method was successfully applied to quantitatively determine the amount of betaine in fourteen Fructus Lycii samples from different locations, demonstrating that this method is simple, rapid, and suitable for the quality control of Fructus Lycii.