• Title/Summary/Keyword: Calibration Design

Search Result 605, Processing Time 0.025 seconds

Design of Experimental Test Tracks for Odometry Calibration of Wheeled Mobile Robots (차륜형 이동로봇의 오도메트리 보정을 위한 실험적 주행시험경로 설계)

  • Jung, Changbae;Moon, Changbae;Jung, Daun;Chung, Woojin
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.3
    • /
    • pp.160-169
    • /
    • 2014
  • Odometry using wheel encoder is a common relative positioning technique for wheeled mobile robots. The major drawback of odometry is that the kinematic modeling errors are accumulated when the travel distance increases. Therefore, accurate calibration of odometry is required. In several related works, various schemes for odometry calibration are proposed. However, design guidelines of test tracks for odometry calibration were not considered. More accurate odometry calibration results can be achieved by using appropriate test track because the position and orientation errors after the test are affected by the test track. In this paper, we propose the design guidelines of test tracks for odometry calibration schemes using experimental heading errors. Numerical simulations and experiments clearly demonstrate that the proposed design guidelines result in more accurate calibration results.

Optimal Depth Calibration for KinectTM Sensors via an Experimental Design Method (실험 계획법에 기반한 키넥트 센서의 최적 깊이 캘리브레이션 방법)

  • Park, Jae-Han;Bae, Ji-Hum;Baeg, Moon-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.11
    • /
    • pp.1003-1007
    • /
    • 2015
  • Depth calibration is a procedure for finding the conversion function that maps disparity data from a depth-sensing camera to actual distance information. In this paper, we present an optimal depth calibration method for Kinect$^{TM}$ sensors based on an experimental design and convex optimization. The proposed method, which utilizes multiple measurements from only two points, suggests a simplified calibration procedure. The confidence ellipsoids obtained from a series of simulations confirm that a simpler procedure produces a more reliable calibration function.

Evaluating the performance AASHTOWare's mechanistic-empirical approach for roller-compacted concrete roadways

  • Emin Sengun
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.445-469
    • /
    • 2024
  • The Federal Highway Administration (FHWA) has recommended the use of AASHTOWare Pavement Mechanistic-Empirical Design (PMED) software for Roller-Compacted Concrete (RCC) pavement design, but specific calibration for RCC is missing. This study investigates the software's capacity to predict the long-term performance of RCC roadways within the framework of conventional concrete pavement calibration. By reanalyzing existing RCC projects in several U.S. states: Colorado, Arkansas, South Carolina, Texas, and Illinois, the study highlights the need for specific calibration tailored to the unique characteristics of RCC. Field observations have emphasized occurrence of early distresses in RCC pavements, particularly transverse-cracking and joint-related issues. Despite data challenges, the AASHTOWare PMED software exhibits notable correlation between its long-term predictions and actual field performance in RCC roadways. This study stresses that RCC applications with insufficient joint spacing and thickness are prone to premature cracking. To enhance the accuracy of RCC pavement design, it is essential to discuss the inclusion of RCC as a dedicated rigid pavement option in AASHTOWare PMED. This becomes particularly crucial when the rising popularity of RCC roadways in the U.S. and Canada is considered. Such an inclusion would solidify RCC as a viable third option alongside Jointed Plain Concrete Pavements (JPCP) and Continuously Reinforced Concrete Pavements (CRCP) for design and deployment of rigid pavements. The research presents a roadmap for future calibration endeavors and advocates for the integration of RCC pavement as a distinct pavement type within the software. This approach holds promise for achieving more precise RCC pavement design and performance predictions.

CMAC Neuro-Fuzzy Design for Color Calibration (컬러재현을 위한 CMAC의 뉴로퍼지 설계)

  • 이철희;변오성;문성룡;임기영
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.97-100
    • /
    • 2001
  • CMAC model was proposed by Albus [6] to formulate the processing characteristics of the human cerebellum. Instead of the global weight updating scheme used in the back propagation, CMAC use the local weight updating scheme. Therefore, CMAC have the advantage of fast learning and high convergence rate. In this paper, simulate Color Calibration by CMAC in color images and design hardware by VHDL-base high-level synthesis.

  • PDF

A Calibration of the fundamental Diagram on the Type of Expressway (고속도로 유형별 교통류 모형 정산)

  • Yoon, Jae-Yong;Lee, Eui-Eun;Kim, Hyunmyung;Han, Dong-Hee;Lee, Dong-Youn;Lee, Choong-Shik
    • International Journal of Highway Engineering
    • /
    • v.16 no.4
    • /
    • pp.119-126
    • /
    • 2014
  • PURPOSES: Used in transportation planning and traffic engineering, almost traffic simulation tools have input variable values optimized by overseas traffic flow attribution because they are almost developed in overseas country. Thus, model calibration appropriated for internal traffic flow attribution is needed to improve reliability of simulation method. METHODS : In this study, the traffic flow model calibration is based on expressways. For model calibration, it needs to define each expressway link according to attribution, thus it is classified by design speed, geometric conditions and number of lanes. And modified greenshield model is used as traffic flow model. RESULTS : The result of the traffic model calibration indicates that internal congested density is lower than overseas. And the result of analysis according to the link attribution indicates that the more design speed and number of lanes increase, the lower the minimum speed, the higher the congested density. CONCLUSIONS: In the traffic simulation tool developed in overseas, the traffic flow is different as design speed and number of lanes, but road segment don't affect traffic flow. Therefore, these results need to apply reasonably to internal traffic simulation method.

Calibration of digital wide-range neutron power measurement channel for open-pool type research reactor

  • Joo, Sungmoon;Lee, Jong Bok;Seo, Sang Mun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.203-210
    • /
    • 2018
  • As the modernization of the nuclear instrumentation system progresses, research reactors have adopted digital wide-range neutron power measurement (DWRNPM) systems. These systems typically monitor the neutron flux across a range of over 10 decades. Because neutron detectors only measure the local neutron flux at their position, the local neutron flux must be converted to total reactor power through calibration, which involves mapping the local neutron flux level to a reference reactor power. Conventionally, the neutron power range is divided into smaller subranges because the neutron detector signal characteristics and the reference reactor power estimation methods are different for each subrange. Therefore, many factors should be considered when preparing the calibration procedure for DWRNPM channels. The main purpose of this work is to serve as a reference for performing the calibration of DWRNPM systems in research reactors. This work provides a comprehensive overview of the calibration of DWRNPM channels by describing the configuration of the DWRNPM system and by summarizing the theories of operation and the reference power estimation methods with their associated calibration procedure. The calibration procedure was actually performed during the commissioning of an open-pool type research reactor, and the results and experience are documented herein.

A Bayesian Approach to Linear Calibration Design Problem

  • Kim, Sung-Chul
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.20 no.3
    • /
    • pp.105-122
    • /
    • 1995
  • Based on linear models, the inference about the true measurement x$_{f}$ and the optimal designs x (nx1) for the calibration experiments are considered via Baysian statistical decision analysis. The posterior distribution of x$_{f}$ given the observation y$_{f}$ (qxl) and the calibration experiment is obtained with normal priors for x$_{f}$ and for themodel parameters (.alpha., .betha.). This posterior distribution is not in the form of any known distributions, which leads to the use of a numerical integration or an approximation for the calculation of the overall expected loss. The general structure of the expected loss function is characterized in the form of a conjecture. A near-optimal design is obtained through the approximation nof the conditional covariance matrix of the joint distribution of (x$_{f}$ , y$_{f}$ $^{T}$ )$^{T}$ . Numerical results for the univariate case are given to demonstrate the conjecture and to evaluate the approximation.n.

  • PDF

An Efficient Camera Calibration Method for Head Pose Tracking (머리의 자세를 추적하기 위한 효율적인 카메라 보정 방법에 관한 연구)

  • Park, Gyeong-Su;Im, Chang-Ju;Lee, Gyeong-Tae
    • Journal of the Ergonomics Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.77-90
    • /
    • 2000
  • The aim of this study is to develop and evaluate an efficient camera calibration method for vision-based head tracking. Tracking head movements is important in the design of an eye-controlled human/computer interface. A vision-based head tracking system was proposed to allow the user's head movements in the design of the eye-controlled human/computer interface. We proposed an efficient camera calibration method to track the 3D position and orientation of the user's head accurately. We also evaluated the performance of the proposed method. The experimental error analysis results showed that the proposed method can provide more accurate and stable pose (i.e. position and orientation) of the camera than the conventional direct linear transformation method which has been used in camera calibration. The results of this study can be applied to the tracking head movements related to the eye-controlled human/computer interface and the virtual reality technology.

  • PDF

Design and Evaluation of Uncertainty for 6-component Force/Moment Calibration Machine (6분력 힘/모멘트 교정기의 설계 및 불확도 평가)

  • 김갑순;강대임;송후근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.68-72
    • /
    • 1997
  • This paper presents the design and the evaluation of the 6-component force/moment calibration machine which h a s t h e maximum capacities of 500 N in forces and 50 Nm in moments. This calibration machine consists of body. fixture. force generating system, moment generating system. The expanded uncertainty of the calibration machine is evaluated by calculating the A type uncertainty. $U_A$ and B type uncertainty, $U_B$. The evaluation results. this system has the expanded uncertainty of less than $2{\times}10^[-2]$ in respective force and moment components.

  • PDF

DESIGN AND DEVELOPMENT OF THE COMPACT AIRBORNE IMAGING SPECTROMETER SYSTEM

  • Lee, Kwang-Jae;Yong, Sang-Soon;Kim, Yong-Seung
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.118-121
    • /
    • 2007
  • In recent years, the hyperspectral instruments with high spatial and high spectral resolution have become an important component of wide variety of earth science applications. The primary mission of the proposed Compact Airborne Imaging Spectrometer System (CAISS) in this study is to acquire and provide full contiguous spectral information with high quality spectral and spatial resolution for advanced applications in the field of remote sensing. The CAISS will also be used as the vicarious calibration equipment for the cross-calibration of satellite image data. The CAISS consists of six physical units: the camera system, the Jig, the GPS/INS, the gyro-stabilized mount, the operating system, and the power inverter and distributor. Additionally, the calibration instruments such as the integrated sphere and spectral lamps are also prepared for the radiometric and spectral calibration of the CAISS. The CAISS will provide high quality calibrated image data that can support evaluation of satellite application products. This paper summarizes the design, development and major characteristic of the CAISS.

  • PDF