• Title/Summary/Keyword: Calibration Chamber Test

Search Result 103, Processing Time 0.031 seconds

Application of Successive Cavity Expansion Theory to Piezocone Tests. (피에조콘 관입 시험에 대한 연속 공동확장이론모델의 적용)

  • Lim, Beyong-Seock;Lee, In-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.599-606
    • /
    • 2000
  • 본 연구는 피에조콘(Piezocone) 관입 시험에 의한 과잉간극수압의 소산(Dissipation)특성을 파악하기 위하여, 실측된 소산실험 결과치와 Gupta & Davidson에 의해 개발된 연속 공동확장이론(Successive Cavity Expansion Theory) 모델을 비교하였고, 그 경험적 이론의 적합성을 규명하였다. 연속 공동확장 이론이란, 콘 관입이 유발하는 관입 주변지반의 변환 메커니즘을 연속적인 공동확장의 전개과정로 파악할 때, 관입주변의 연속적 공동확장 영역에서 발생된 과잉간극수압들은 연속적으로 소산되어지고, 결국에는 관입멈춤직후 얻게 되는 소산시험의 결과도 이러한 과잉간극수압의 연속적 소산 메커니즘으로부터 그 영향을 받는다는 개념이다. 본 연구의 실험방법은 Piezocone 관입을 위한 연약모형지반 조성을 위하여 초대형 Slurry Consolidometer에 Slurry를 45일간 압밀시킨후 Calibration Chamber(Louisiana State University Calibration Chamber System)에 옮긴 후 2차 압밀시키는 Two-Stage Consolidation Method를 사용하였다. 또한 모형지반내에 8개의 Piezometers를 설치하여 Piezometers를 설치하여 Piezocone 관입시 유발되는 지반 내에서의 과잉간극수압의 변환을 측정하였다. 실험결과와 이론 예측치를 비교함으로써 연속 공동확장이론 모델은 u$_2$형식의 피에조콘 관입 소산시험 결과들과 잘 들어맞는 모습을 보여줬으나, 관입으로 인한 주변 지반의 과잉간극수압의 소산변화는 정성적으로만 모사 되는 모습을 보여줬다.

  • PDF

Influence of Penetration Rate on Piezocone Penetration Test (변형율 속도가 콘관입시험에 미치는 영향)

  • Kim, Dae-kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.02a
    • /
    • pp.59-70
    • /
    • 2000
  • 본 연구에서는 콘관입속도가 콘관입시험 결과에 미치는 영향을 연구하기 위하여 LSU/CALCHAS(Louisiana State University Calibration Chamber System)를 이용한 미니 Piezocone의 관입시험이 수행되었으며 그 결과를 비교 분석하였다. 10회의 미니 Piezocone 관입시험이 Ko 조건에서 수행되었으며 33% kaolin, 67% sand mixture가 시료로 사용되었고, 콘관입속도 0.3, 0.6cm/sec, U1(filter element at the cone tip), U2(filter element above the cone base), OCR=1, 10 의 조건이 다양하게 적용되었다. 시험결과 Cone Resistance, Excess Pore Water Pressure, Sleeve Friction 은 U1, U2 두 종류의 콘에 대해서 모두 관입속도가 커짐에 따라 증가하였으나 OCR의 증가에 따라서는 감소하였으며 U1의 Excess Pore Water Pressure가 U2 경우보다 크게 측정되었다.

  • PDF

A Study on the Simulation of Leak Flow-rate Using Isothermal Chamber (등온화용기를 이용한 누설유량 시뮬레이션에 관한 연구)

  • Ji, S.W.;Jang, J.S.
    • Journal of Power System Engineering
    • /
    • v.14 no.5
    • /
    • pp.71-75
    • /
    • 2010
  • Leak detection technology is a challenging research until nowadays, because it has wide and various applications in industry. Furthermore pneumatic component reliability test based on ISO requires air leakage measurement. The conventional measurement methods need a complex operation and the calibration of leak detector. Tracing the history of our study, we proposed a new method for measurement of leak flow rate using isothermal chamber. In this study, propose a simulation model of isothermal chamber by infinitesimal flow -rate, such as a leak flow-rate. The effectiveness of the proposed simulation model is proved by simulation and experimental results. Base on the comparison results, proposed simulation model is good agreement with experimental results.

Characteristics of Driving Efficiency and Bearing Capacity for Long Steel Pipe Pile Method without Welding (무용접 장대강관말뚝 공법의 항타 및 지지력 특성)

  • 백규호
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.235-241
    • /
    • 2000
  • The existing methods for installation of long steel pipe pile have some uneconomical problems such as increase of installation cost and period due to the welding of two piles and removal of soil plug, and decrease of driving efficiency due to the increase of driving resistance resulting from time effect during the welding of piles and removal of soil plug, etc. Thus, in this study, new installation method for long steel pipe pile is suggested to solve the existing problems, and calibration chamber tests were performed to investigate both driving and economical efficiency for the suggested method. The test results showed that the new method increased bearing capacity, and decreased the installation cost and period for long steel pipe piles compared with existing methods.

  • PDF

Construction of the Pressure Sensitive Paint System (PSP 압력측정 시스템의 구축)

  • Jeon, Young-Jin;Kim, Ki-Su;Seo, Hyung-Seok;Byun, Yung-Hwan;Lee, Jae-Woo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.1
    • /
    • pp.7-15
    • /
    • 2008
  • Pressure Sensitive Paint(PSP) means a reacting paint in pressure. The calibration of PSP and the wind tunnel test of PSP painted model are required to measure pressure by using PSP. Therefore, the post processing from these results shows the information and image of the pressure distribution. PSP can show the information of total pressure from the wind tunnel test and the calibration. In this study, equipments of PSP are composed, and experiment is accomplished by using PSP. The surface pressure distribution around the wall of nozzle is measured by PSP. The measured pressure has similar results to those of the CFD and pressure tap measurement.

Water Hammer in the Pump Pipeline System with an Air Chamber (에어챔버가 설치된 가압펌프 계통에서의 수격현상)

  • Kim, Sang-Gyun;Lee, Kye-Bock
    • Journal of Energy Engineering
    • /
    • v.16 no.4
    • /
    • pp.187-193
    • /
    • 2007
  • Water hammer following the tripping of pumps can lead to overpressures and negative pressures. Reduction in overpressure and negative pressure may be necessary to avoid failure, to improve the efficiency of operation and to avoid fatigue of system components. The field tests on the water hammer have been conducted on the pump rising pipeline system with an air chamber. The hydraulic transient is modeled using the method of characteristics. Minimizing the least squares problem representing the difference between the measured and predicted transient response in the system performs the calibration of the simulation program. Among the input variables used in the water hammer analysis, the effects of the polytropic exponent, the discharge coefficient and the wave speed on the result of the numerical analysis were examined. The computer program developed in this study will be useful in designing the optimum parameters of an air chamber for the real pump pipeline system. The correct selection of air chamber size and the effects of related parameters to minimize water hammer have been investigated by both field measurements and numerical modeling.

Evaluation of Pile Bearing Capacity using Calibration Chamber Test (모형토조실험을 통한 말뚝지지력의 평가)

  • 이인모;이명환
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1992.03a
    • /
    • pp.13-40
    • /
    • 1992
  • Static formulae based on limiting equilibrium theories often provide misleading predictions of pile bearing capacity in cohesionless soils due to the incorrect basic assumptions or oversimplification of actual soil conditions. Soil conditions prior to pile driving are significantly changed after pile installation and imposition of high stress levels. Therefore soi1 parameters at failure rather than those obtained at initial conditions should be used in application of static formulae. In this research. model pile test data were analyzed and compared with the predicted values obtained from the various static formulae. The results showed that the proper choice of soil parameters remarkably improve the reliability of static formulae.

  • PDF

Estimation of Shear Moduli Degradation Characteristics from Pressuremeter Tests (프레셔미터 시험을 이용한 전단탄성계수 감쇠 특성 평가)

  • Kwon, Hyung Min;Chung, Choong Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3C
    • /
    • pp.105-113
    • /
    • 2009
  • Pressuremeter test estimates deformational properties of soil from the relationship between applied pressure and the displacement of cavity wall, and the results reflect the in-situ stress condition and the structure of soil particles. This study suggests the overall process of test and analysis for the evaluation of nonlinear degradation characteristics of shear moduli, based on the reloading curve of pressuremeter test. The method estimates the maximum shear modulus, taking into account the difference between the stress states around the probe in reloading and that of the in-situ state, and then combines the degradation characteristics of shear moduli taken from reloading curve. This procedure derives the shear moduli in overall strain range. Pressuremeter tests were carried out in various ground conditions using large calibration chamber, together with various reference tests. Shear moduli taken from pressuremeter tests were compared with bender element test and resonant column test results.

A Study of the Temperature Dependency for Photocatalytic VOC Degradation Chamber Test Under UVLED Irradiations (UVLED 광원을 이용한 광촉매 VOC 제거 특성 평가시 온도에 따른 농도 변화에 관한 연구)

  • Moon, Jiyeon;Lee, Kyusang;Kim, Seonmin
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.755-761
    • /
    • 2015
  • Photocatalytic VOCs removal test in gas phase is generally performed by placing the light source on the outside due to maintaining a constant temperature inside the test chamber. The distance between light source and photocatalysts is importantin the VOC degradation test since the intensity of light is rapidly decreased as the distance farther. Especially, for the choice of light source as UVLED, this issue is more critical because UVLED light source emits lots of heat and it is hard to measure the exact concentration of VOCs due to changed temperature in the test chamber. In this study, we modified VOC removal test chamber base on the protocol of air cleaner test and evaluated the efficiency of photocatalystunder UVLED irradiation. Photocatalystsof two different samples (commercial $TiO_2$ and the synthesized vanadium doped $TiO_2$) weretested for the p-xylene degradation in the closed chamber system and compared with each other in order to exclude any experimental uncertainties. During the VOC removal test, VOC concentrations were monitored and corrected at regular time intervals because the temperature in the chamber increases ${\sim}20^{\circ}C$ due tothe heat of UVLED. The results showed that theconversion ratio of p-xylene has 40~43% difference before and after the temperature correction. Based on those results, we conclude that the VOC concentration correction must be required for the VOC removal test in a closed chamber system under UVLED light source and obtained the corrected efficiencies of various photocatlysts.