• 제목/요약/키워드: Calculation methodology

검색결과 482건 처리시간 0.021초

Meteorological basis for wind loads calculation in Croatia

  • Bajic, Alica;Peros, Bernardin
    • Wind and Structures
    • /
    • 제8권6호
    • /
    • pp.389-406
    • /
    • 2005
  • The results of reference wind speed calculation in Croatia as a base for the revision of the Croatian standards for wind loads upon structures are presented. Wind speed averaged over 10 minutes, at 10 m height, in a flat, open terrain, with a 50-year mean return period is given for 27 meteorological stations in Croatia. It is shown that the greatest part of Croatia is covered with expected reference wind speeds up to 25 m/s. Exceptions are stations with specific anemometer location open to the bura wind which is accelerated due to the channelling effects of local orography and the nearby mountain passes where the expected reference wind speed ranges between 38 m/s and 55 m/s. The methodology for unifying all available information from wind measurements regardless of the averaging period is discussed by analysing wind speed variability at the meteorological station in Hvar.

배관감육관리에 활용되는 CHECWORKS 프로그램의 열수력해석 방법론 검증에 관한 연구 (A Study on the Verification of Network Flow Analysis Methodology of CHECWORKS Program used in Pipe Wall Thinning Management)

  • 서혁기;황경모
    • Corrosion Science and Technology
    • /
    • 제12권2호
    • /
    • pp.79-84
    • /
    • 2013
  • In general, pipelines at nuclear power plants are affected by various types of degradation mechanisms and may be ruptured after gradually thinning. FAC (Flow-Accelerated Corrosion) is typical aging mechanism affecting the secondary side piping system. In Korea nuclear power plants, CHECWORKS program have been used for management of wall thinning damages. However, sometimes, CHECWORKS program shows wrong results at the stage of NFA (Network Flow Analysis) in case of complex pipelines. This paper describes the calculation results of pressure drop in a complex pipeline and single line by using the CHECWORKS program and the analysis results are compared with those of engineering calculation results including errors between them.

MECHANICAL과 Fugitive Dust Model을 이용한 비포장도로에서의 비산먼지 발생량 산정 및 주변영향 평가 (Estimation of fugitive dust emission and impact assessment by MECHANICAL and Fugitive Dust Model on a unpaved road)

  • 김인수;장영기
    • 환경영향평가
    • /
    • 제9권4호
    • /
    • pp.257-269
    • /
    • 2000
  • This study is to investigate the methodology and applicability on emission control by both MECHANICAL Model and Fugitive Dust Model (FDM) through the comparison of field measurement data and calculated data. Comparing to the method of AP-42 emission fector on the production of flying dust the MECHANICAL Model was proved to be more applicable to the calculation emission rate on the various dust emission conditions on a unpaved road. The seperate calculation on annual mean emission amount and a 24working hours amount was undertaken for the easy management of fugitive dust. Dust concentration predicted by FDM is similar with a measurement value.

  • PDF

Computation of viscoelastic flow using neural networks and stochastic simulation

  • Tran-Canh, D.;Tran-Cong, T.
    • Korea-Australia Rheology Journal
    • /
    • 제14권4호
    • /
    • pp.161-174
    • /
    • 2002
  • A new technique for numerical calculation of viscoelastic flow based on the combination of Neural Net-works (NN) and Brownian Dynamics simulation or Stochastic Simulation Technique (SST) is presented in this paper. This method uses a "universal approximator" based on neural network methodology in combination with the kinetic theory of polymeric liquid in which the stress is computed from the molecular configuration rather than from closed form constitutive equations. Thus the new method obviates not only the need for a rheological constitutive equation to describe the fluid (as in the original Calculation Of Non-Newtonian Flows: Finite Elements St Stochastic Simulation Techniques (CONNFFESSIT) idea) but also any kind of finite element-type discretisation of the domain and its boundary for numerical solution of the governing PDE's. As an illustration of the method, the time development of the planar Couette flow is studied for two molecular kinetic models with finite extensibility, namely the Finitely Extensible Nonlinear Elastic (FENE) and FENE-Peterlin (FENE-P) models.P) models.

실내도면 작성과 물량산출을 위한 모델 개발에 관한 연구 (A Study on the Model Development for Production of Interior Drawings and estimation of Quantities)

  • 정례화;이승우;추승연
    • 한국실내디자인학회논문집
    • /
    • 제19호
    • /
    • pp.30-37
    • /
    • 1999
  • This study presents a methods on the construction of integrated system for the purpose of automation of design plans, calculation of quantity of materials and estimation by abstracting information on building materials which is produced on the course of three dimension modeling by using computer. Therefore, an object oriented methodology is introduced to compose design informations in three dimension, space for unifying building informations, and expressing properties of building factors and materials, and to construct a database for computers to recognize architecture informations. An object indicates a conceptual individual existing in real world or existence of individual and necessity in composing a building could be called as objects such as column, wall, beam, slab, door and window and these contain materiality and immateriality. It is systemized to which properties of these building's objects are installed by the user of computer and by API(Application Programming Interface), chosen informations automatically converse to each unit work such as design plan structure plan, calculation of amount of materials, etc.

  • PDF

하이브리드 자동차용 리튬배터리의 충전량, 용량감퇴, 저항감퇴 예측을 위한 슬라이딩 모드 관측기 설계 (The SOC, Capacity-fade, Resistance-fade Estimation Technique using Sliding Mode Observer for Hybrid Electric Vehicle Lithium Battery)

  • 김일송;이진국
    • 전기학회논문지
    • /
    • 제57권5호
    • /
    • pp.839-844
    • /
    • 2008
  • A novel state of health estimation method for hybrid electric vehicle lithium battery using sliding mode observer has been presented. A simple R-C circuit method has been used for the lithium battery modeling for the reduced calculation time and system resources due to the simple matrix operations. The modeling errors of simple model are compensated by the sliding mode observer. The design methodology for state of health estimation using dual sliding mode observer has been presented in step by step. The structure of the proposed system is simple and easy to implement, but it shows robust control property against modeling errors and temperature variations. The convergence of proposed observer system has been proved by the Lyapunov inequality equation and the performance of system has been verified by the sequence of urban dynamometer driving schedule test. The test results show the proposed observer system has superior tracking performance with reduced calculation time under the real driving environments.

A New Methodology for the Rapid Calculation of System Reliability of Complex Structures

  • Park, Sooyong
    • Architectural research
    • /
    • 제3권1호
    • /
    • pp.71-80
    • /
    • 2001
  • It is quite difficult to calculate the collapse probability of a system such as statically indeterminate structure that has many possible modes or paths to complete failure and the problem has remained essentially unsolved. A structure is synthesized by several components or elements and its capacity to resist the given loads is a function of the capacity of the individual element. Thus it is reasonable to assess the probability of failure of the system based upon those of its elements. This paper proposes an efficient technique to directly assess the reliability of a complex structural system from the reliabilities of its components or elements. The theory for the calculation of the probability of a structural system is presented. The target requirements of the method and the fundamental assumptions governing the method are clearly stated. A portal frame and two trusses are selected to demonstrate the efficiency of the method by comparing the results obtained from the proposed method to those from the existing methods in the literature.

  • PDF

유한장 선로의 3차원 전계 해석에 관한 연구 (A Study on 3 Dimensional Electric Field Analysis of the Finite Transmission Line)

  • 이병윤;명성호;민석원;김응식;박종근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 C
    • /
    • pp.1565-1567
    • /
    • 1994
  • This paper describes a methodology for the three dimensional electric field calculation around parallel and orthogonal transmission lines. A nonuniform modeling method of finite line using linear line charges is proposed through the error analysis, Several examples of three dimensional electric field calculation are carried out by this method.

  • PDF

Modeling of central void formation in LWR fuel pellets due to high-temperature restructuring

  • Khvostov, Grigori
    • Nuclear Engineering and Technology
    • /
    • 제50권7호
    • /
    • pp.1190-1197
    • /
    • 2018
  • Analysis of the GRSW-A model coupled into the FALCON code is extended by simulation of central void formation in fuel pellets due to high-temperature fuel restructuring. The extended calculation is verified against published, well-known experimental data. Good agreement with the data for a central void diameter in pellets of the rod irradiated in an Experimental Breeder Reactor is shown. The new calculation methodology is employed in comparative analysis of modern BWR fuel behavior under assumed high-power operation. The initial fuel porosity is shown to have a major effect on the predicted central void diameter during the operation in question. Discernible effects of a central void on peak fuel temperature and Pellet-Cladding Mechanical Interaction (PCMI) during a simulated power ramp are shown. A mitigating effect on PCMI is largely attributed to the additional free volume in the pellets into which the fuel can creep due to internal compressive stresses during a power ramp.

딥 러닝을 이용한 인공지능 구성방정식 모델의 개발 (Development of Artificial Intelligence Constitutive Equation Model Using Deep Learning)

  • 문희범;강경필;이경훈;김용환
    • 소성∙가공
    • /
    • 제30권4호
    • /
    • pp.186-194
    • /
    • 2021
  • Finite element simulation is a widely applied method for practical purpose in various metal forming process. However, in the simulation of elasto-plastic behavior of porous material or in crystal plasticity coupled multi-scale simulation, it requires much calculation time, which is a limitation in its application in practical situations. A machine learning model that directly outputs the constitutive equation without iterative calculations would greatly reduce the calculation time of the simulation. In this study, we examined the possibility of artificial intelligence based constitutive equation with the input of existing state variables and current velocity filed. To introduce the methodology, we described the process of obtaining the training data, machine learning process and the coupling of machine learning model with commercial software DEFROMTM, as a preliminary study, via rigid plastic finite element simulation.