• 제목/요약/키워드: Calcium-sensitization

검색결과 15건 처리시간 0.024초

Calcium Sensitization Induced by Sodium Fluoride in Permeabilized Rat Mesenteric Arteries

  • Yang, En-Yue;Cho, Joon-Yong;Sohn, Uy-Dong;Kim, In-Kyeom
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권1호
    • /
    • pp.51-57
    • /
    • 2010
  • It was hypothesized that NaF induces calcium sensitization in $Ca^{2+}$-controlled solution in permeabilized rat mesenteric arteries. Rat mesenteric arteries were permeabilized with $\beta$-escin and subjected to tension measurement. NaF potentiated the concentration-response curves to $Ca^{2+}$ (decreased $EC_{50}$ and increased $E_{max}$). Cumulative addition of NaF (4.0, 8.0 and 16 mM) also increased vascular tension in $Ca^{2+}$-controlled solution at pCa 7.0 or pCa 6.5, but not at pCa 8.0. NaF-induced vasocontraction and $GTP{\gamma}S$-induced vasocontraction were not additive. NaF-induced vasocontraction at pCa 7.0 was inhibited by pretreatment with Rho kinase inhibitors H1152 or Y27632 but not with a MLCK inhibitor ML-7 or a PKC inhibitor Ro31-8220. NaF induces calcium sensitization in a $Ca^{2+}$ dependent manner in $\beta$-escin-permeabilized rat mesenteric arteries. These results suggest that NaF is an activator of the Rho kinase signaling pathway during vascular contraction.

INORGANIC ARSENIC INCREASES VASOCONSTRICTION THROUGH CALCIUM-SENSITIZATION IN VASCULAR SMOOTH MUSCLES

  • Lee, Moo-Yeol;Lee, Young-Ho;Chung, Seung-Min;Bae, Ok-Nam;Chung, Jin-Ho
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2002년도 Molecular and Cellular Response to Toxic Substances
    • /
    • pp.156-156
    • /
    • 2002
  • Chronic exposure of arsenic is well known to be the cause of cardiovascular disease such as hypertension. In order to investigate the effect of arsenic on blood vessels, we examined whether arsenic affected agonist-induced contraction of aortic rings in isolated organ bath system.(omitted)

  • PDF

Bupivacaine-induced Vasodilation Is Mediated by Decreased Calcium Sensitization in Isolated Endothelium-denuded Rat Aortas Precontracted with Phenylephrine

  • Ok, Seong Ho;Bae, Sung Il;Kwon, Seong Chun;Park, Jung Chul;Kim, Woo Chan;Park, Kyeong Eon;Shin, Il Woo;Lee, Heon Keun;Chung, Young Kyun;Choi, Mun Jeoung;Sohn, Ju Tae
    • The Korean Journal of Pain
    • /
    • 제27권3호
    • /
    • pp.229-238
    • /
    • 2014
  • Background: A toxic dose of bupivacaine produces vasodilation in isolated aortas. The goal of this in vitro study was to investigate the cellular mechanism associated with bupivacaine-induced vasodilation in isolated endothelium-denuded rat aortas precontracted with phenylephrine. Methods: Isolated endothelium-denuded rat aortas were suspended for isometric tension recordings. The effects of nifedipine, verapamil, iberiotoxin, 4-aminopyridine, barium chloride, and glibenclamide on bupivacaine concentration-response curves were assessed in endothelium-denuded aortas precontracted with phenylephrine. The effect of phenylephrine and KCl used for precontraction on bupivacaine-induced concentration-response curves was assessed. The effects of verapamil on phenylephrine concentration-response curves were assessed. The effects of bupivacaine on the intracellular calcium concentration ($[Ca^{2+}]_i$) and tension in aortas precontracted with phenylephrine were measured simultaneously with the acetoxymethyl ester of a fura-2-loaded aortic strip. Results: Pretreatment with potassium channel inhibitors had no effect on bupivacaine-induced relaxation in the endothelium-denuded aortas precontracted with phenylephrine, whereas verapamil or nifedipine attenuated bupivacaine-induced relaxation. The magnitude of the bupivacaine-induced relaxation was enhanced in the 100mM KCl-induced precontracted aortas compared with the phenylephrine-induced precontracted aortas. Verapamil attenuated the phenylephrine-induced contraction. The magnitude of the bupivacaine-induced relaxation was higher than that of the bupivacaine-induced $[Ca^{2+}]_i$ decrease in the aortas precontracted with phenylephrine. Conclusions: Taken together, these results suggest that toxic-dose bupivacaine-induced vasodilation appears to be mediated by decreased calcium sensitization in endothelium-denuded aortas precontracted with phenylephrine. In addition, potassium channel inhibitors had no effect on bupivacaine-induced relaxation. Toxic-dose bupivacaine-induced vasodilation may be partially associated with the inhibitory effect of voltage-operated calcium channels.

Inorganic Arsenic Increases Vasoconstriction through Calcium-Sensitization in Vascular Smooth Muscles

  • Lee, M.Y.;Lee, Y.H.;Bae, O.K.;Chung, J.H.
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.164.2-165
    • /
    • 2003
  • Chronic exposure of arsenic is well known to be the cause of cardiovascular disease such as hypertension. In order to investigate the effect of arsenic on blood vessels. we examined whether arsenic affected agonist-induced contraction of aortic rings in isolated organ bath system. Treatment with arsenite increased vasoconstriction induced by phenylephrine or serotonin in a concentration-dependent manner. (omitted)

  • PDF

Effects of NaOCl on Neuronal Excitability and Intracellular Calcium Concentration in Rat Spinal Substantia Gelatinosa Neurons

  • Lee, Hae In;Park, A-Reum;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • 제38권1호
    • /
    • pp.5-12
    • /
    • 2013
  • Recent studies indicate that reactive oxygen species (ROS) can act as modulators of neuronal activity, and are critically involved in persistent pain primarily through spinal mechanisms. In this study, we investigated the effects of NaOCl, a ROS donor, on neuronal excitability and the intracellular calcium concentration ($[Ca^{2+}]_i$) in spinal substantia gelatinosa (SG) neurons. In current clamp conditions, the application of NaOCl caused a membrane depolarization, which was inhibited by pretreatment with phenyl-N-tert-buthylnitrone (PBN), a ROS scavenger. The NaOCl-induced depolarization was not blocked however by pretreatment with dithiothreitol, a sulfhydryl-reducing agent. Confocal scanning laser microscopy was used to confirm whether NaOCl increases the intracellular ROS level. ROS-induced fluorescence intensity was found to be increased during perfusion of NaOCl after the loading of 2',7'-dichlorofluorescin diacetate ($H_2DCF$-DA). NaOCl-induced depolarization was not blocked by pretreatment with external $Ca^{2+}$ free solution or by the addition of nifedifine. However, when slices were pretreated with the $Ca^{2+}$ ATPase inhibitor thapsigargin, NaOCl failed to induce membrane depolarization. In a calcium imaging technique using the $Ca^{2+}$-sensitive fluorescence dye fura-2, the $[Ca^{2+}]_i$ was found to be increased by NaOCl. These results indicate that NaOCl activates the excitability of SG neurons via the modulation of the intracellular calcium concentration, and suggest that ROS induces nociception through a central sensitization.

SKF96365 impedes spinal glutamatergic transmission-mediated neuropathic allodynia

  • Qiru Wang;Yang Zhang;Qiong Du;Xinjie Zhao;Wei Wang;Qing Zhai;Ming Xiang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제27권1호
    • /
    • pp.39-48
    • /
    • 2023
  • Spinal nerve injury causes mechanical allodynia and structural imbalance of neurotransmission, which were typically associated with calcium overload. Storeoperated calcium entry (SOCE) is considered crucial elements-mediating intracellular calcium homeostasis, ion channel activity, and synaptic plasticity. However, the underlying mechanism of SOCE in mediating neuronal transmitter release and synaptic transmission remains ambiguous in neuropathic pain. Neuropathic rats were operated by spinal nerve ligations. Neurotransmissions were assessed by whole-cell recording in substantia gelatinosa. Immunofluorescence staining of STIM1 with neuronal and glial biomarkers in the spinal dorsal horn. The endoplasmic reticulum stress level was estimated from qRT-PCR. Intrathecal injection of SOCE antagonist SKF96365 dose-dependently alleviated mechanical allodynia in ipsilateral hind paws of neuropathic rats with ED50 of 18 ㎍. Immunofluorescence staining demonstrated that STIM1 was specifically and significantly expressed in neurons but not astrocytes and microglia in the spinal dorsal horn. Bath application of SKF96365 inhibited enhanced miniature excitatory postsynaptic currents in a dosage-dependent manner without affecting miniature inhibitory postsynaptic currents. Mal-adaption of SOCE was commonly related to endoplasmic reticulum (ER) stress in the central nervous system. SKF96365 markedly suppressed ER stress levels by alleviating mRNA expression of C/ EBP homologous protein and heat shock protein 70 in neuropathic rats. Our findings suggested that nerve injury might promote SOCE-mediated calcium levels, resulting in long-term imbalance of spinal synaptic transmission and behavioral sensitization, SKF96365 produces antinociception by alleviating glutamatergic transmission and ER stress. This work demonstrated the involvement of SOCE in neuropathic pain, implying that SOCE might be a potential target for pain management.

[$Ca^{2+}$ Sensitization Mechanism in Stretch-induced Myogenic Tone

  • Kim, Jung-Sup;Ryu, Sung-Kyung;Ahn, Duck-Sun;Kang, Bok-Soon;Lee, Young-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제6권1호
    • /
    • pp.33-39
    • /
    • 2002
  • It has been suggested that $Ca^{2+}$ sensitization mechanisms might contribute to myogenic tone, however, specific mechanisms have not yet been fully identified. Therefore, we investigated the role of protein kinase C (PKC)- or RhoA-induced $Ca^{2+}$ sensitization in myogenic tone of the rabbit basilar vessel. Myogenic tone was developed by stretch of rabbit basilar artery. Fura-2 $Ca^{2+}$ signals, contractile responses, PKC immunoblots, translocation of PKC and RhoA, and phosphorylation of myosin light chains were measured. Stretch of the resting vessel evoked a myogenic contraction and an increase in the intracellular $Ca^{2+}$ concentration $([Ca^{2+}]_i)$ only in the presence of extracellular $Ca^{2+}$. Stretch evoked greater contraction than high $K^+$ at a given $[Ca^{2+}]_i.$ The stretch-induced increase in $[Ca^{2+}]_i$ and contractile force were inhibited by treatment of the tissue with nifedipine, a blocker of voltage-dependent $Ca^{2+}$ channel, but not with gadolinium, a blocker of stretch-activated cation channels. The PKC inhibitors, H-7 and calphostin C, and a RhoA-activated protein kinase (ROK) inhibitor, Y-27632, inhibited the stretch-induced myogenic tone without changing $[Ca^{2+}]_i.$ Immunoblotting using isoform-specific antibodies showed the presence of $PKC_{\alpha}$ and $PKC_{\varepsilon}$ in the rabbit basilar artery. $PKC_{\alpha},$ but not $PKC_{\varepsilon},$ and RhoA were translocated from the cytosol to the cell membrane by stretch. Phosphorylation of the myosin light chains was increased by stretch and the increased phosphorylation was blocked by treatment of the tissue with H-7 and Y-27632, respectively. Our results are consistent with important roles for PKC and RhoA in the generation of myogenic tone. Furthermore, enhanced phosphorylation of the myosin light chains by activation of $PKC_{\alpha}$ and/or RhoA may be key mechanisms for the $Ca^{2+}$ sensitization associated with myogenic tone in basilar vessels.

Cromakalim이 해명의 과민반응 매개체 유리에 미치는 영향 (Effects of Crormakalim on the Release of Mediators in Hypersensitivity of Guinea pig)

  • 노재열;김경환
    • 대한약리학회지
    • /
    • 제29권2호
    • /
    • pp.263-274
    • /
    • 1993
  • $K^+$통로는 기도 평활근 세포에 존재하며 이들 통로가 활성화되면 평활근의 과분극의 결과 이완작용이 나타난다. $K^+$통로의 이런 효과는 과민반응과 천식 치료에 응용될 수 있으므로 우리는 $K^+$통로 개방제인 cromakalim (BRL34915, CK)이 $IgG_1$ 항체로 감작시킨 기도 및 폐조직으로 부터 유리되는 매개체 유리에 미치는 영향을 조사하였다. 피동적으로 감작된 두 조직은 $2{\times}10^{-6}\;M$의 CK로 30분동안 superfusion시킨 후 CK와 항원 (Ox-HSA) 0.1 mg/ml로 자극하였다. 또한 비만세포를 이용하여 CK의 효과를 조사하였다. 해명 폐조직 비만세포는 효소에 의한 digestion method (monodispersed; 미분리 정제), count current elutriation에 의한 방법(partially purified; 부분분리정제), 그리고 discontinuous Percoll방법(highly purified; 순수분리정제)에 의해 순수 분리되었다. CK로 전처치한후, 피동적으로 감작된 비만세포는 OA와 CaI의 여러 농도에 의해 자극되었다. 유리된 Hist은 spectrophotofluorometry에 의해, LT는 면역방사법에 의해 측정되었다. CK 전처치는 $IgG_1$ 감작후 항원에 의해 자극된 기도 조직에서 Hist 유리량을 35%까지, LT 유리량은 40%까지 감소시켰으나 기도 평활근 수축력에는 반응을 나타내지 못하였다. 항원 유도 폐조직에 있어서 CK전처치는 Hist유리량을 25%까지 감소시켰으나 LT 유리에는 미약한 감소를 나타내었다. 해명의 미분리정제, 부분분리정제, 그리고 순수 분리 정제된 비만세포로부터 Hist과 LT은 면역자극(OA)이나 비면역자극(CaI)에 의해 농도 의존적으로 유리되었다. 비만세포에서 유리된 LT는 5-lipoxygenase억제제인 A64077에 의해서 억제됨이 확인되었다. CK전처치는 OA유도 및 CaI유도 해명 폐조직 비만세포에서 Hist과 LT 유리량을 20%까지 감소시켰다. $IgG_1$ 감작후 Ox-HSA유도 기도 평활근 조직이나 혹은 OA유도 및 CaI유도 비만세포에서 Hist과 LT유리에 미치는 CK의 억제효과는 TEA와 GBC에 의해 완전히 봉쇄되었다. 이상의 결과에서 폐조직 비만세포는 LT를 유리할 수 있는 세포로 간주되며, 기도 평활근 이완제로 알려져 있는 CK은 특수 항원 유도 기도 평활근조직에서 매개체 유리를 부분적으로 억제하며, CK은 또한 OA유도 및 CaI로 유도된 순수분리 정제된 비만세포에서 매개체 유리를 부분적으로 억제하는 것으로 보아 비만세포가 활성화시 야기되는 여러 생화학적 현상중에서 미약하나마 $K{^+}$통로가 관여할 것으로 사료된다.

  • PDF

Effects of Mitochondrial Reactive Oxygen Species on Neuronal Excitability in Rat Spinal Substantia Gelatinosa Neurons

  • Lee, Hae-In;Park, A-Reum;Chun, Sang-Woo
    • International Journal of Oral Biology
    • /
    • 제37권1호
    • /
    • pp.17-23
    • /
    • 2012
  • Recent studies indicate that reactive oxygen species (ROS) are critically involved in persistent pain primarily through spinal mechanisms, and that mitochondria are the main source of ROS in the spinal dorsal horn. To investigate whether mitochondrial ROS can induce changes in membrane excitability on spinal substantia gelatonosa (SG) neurons, we examined the effects of mitochondrial electron transport complex (ETC) substrates and inhibitors on the membrane potential of SG neurons in spinal slices. Application of ETC inhibitors, rotenone or antimycin A, resulted in a slowly developing and slight membrane depolarization in SG neurons. Also, application of both malate, a complex I substrate, and succinate, a complex II substrate, caused reversible membrane depolarization and enhanced firing activity. Changes in membrane potential after malate exposure were more prominent than succinate exposure. When slices were pretreated with ROS scavengers such as phenyl-N-tert-buthylnitrone (PBN), catalase and 4- hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), malate-induced depolarization was significantly decreased. Intracellular calcium above $100{\mu}M$ increased malateinduced depolarization, witch was suppressed by cyclosporin A, a mitochondrial permeability transition (MPT) inhibitor. These results suggest that enhanced production of spinal mitochondrial ROS can induce nociception through central sensitization.