참고문헌
-
Hirano K. Current topics in the regulatory mechanism underlying the
$Ca^{2+}$ sensitization of the contractile apparatus in vascular smooth muscle. J Pharmacol Sci. 2007;104:109-115. https://doi.org/10.1254/jphs.CP0070027 -
Somlyo AP, Somlyo AV.
$Ca^{2+}$ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev. 2003;83:1325-1358. https://doi.org/10.1152/physrev.00023.2003 - Budzyn K, Marley PD, Sobey CG. Targeting Rho and Rho-kinase in the treatment of cardiovascular disease. Trends Pharmacol Sci. 2006;27:97-104. https://doi.org/10.1016/j.tips.2005.12.002
- Murthy KS, Makhlouf GM. Fluoride activates G protein-dependent and -independent pathways in dispersed intestinal smooth muscle cells. Biochem Biophys Res Commun. 1994;202:1681-1687. https://doi.org/10.1006/bbrc.1994.2128
- Bogatcheva NV, Wang P, Birukova AA, Verin AD, Garcia JG. Mechanism of fluoride-induced MAP kinase activation in pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol. 2006;290:L1139-1145. https://doi.org/10.1152/ajplung.00161.2005
-
Fujita A, Takeuchi T, Nakajima H, Nishio H, Hata F. Involvement of heterotrimeric GTP-binding protein and rho protein, but not protein kinase C, in agonist-induced
$Ca^{2+}$ sensitization of skinned muscle of guinea pig vas deferens. J Pharmacol Exp Ther. 1995;274:555-561. - Yoshimura H, Jones KA, Perkins WJ, Kai T, Warner DO. Calcium sensitization produced by G protein activation in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2001;281:L631-638. https://doi.org/10.1152/ajplung.2001.281.3.L631
- Jeon SB, Jin F, Kim JI, Kim SH, Suk K, Chae SC, Jun JE, Park WH, Kim IK. A role for Rho kinase in vascular contraction evoked by sodium fluoride. Biochem Biophys Res Commun. 2006;343:27-33. https://doi.org/10.1016/j.bbrc.2006.02.120
- Yang E, Jeon SB, Baek I, Chen ZA, Jin Z, Kim IK. 17beta-estradiol attenuates vascular contraction through inhibition of RhoA/Rho kinase pathway. Naunyn Schmiedebergs Arch Pharmacol. 2009;380:35-44. https://doi.org/10.1007/s00210-009-0408-x
-
Todoroki-Ikeda N, Mizukami Y, Mogami K, Kusuda T, Yamamoto K, Miyake T, Sato M, Suzuki S, Yamagata H, Hokazono Y, Kobayashi S. Sphingosylphosphorylcholine induces
$Ca^{2+}$ -sensitization of vascular smooth muscle contraction: possible involvement of rho-kinase. FEBS Lett. 2000;482:85-90. https://doi.org/10.1016/S0014-5793(00)02046-9 -
Ryu SK, Ahn DS, Cho YE, Choi SK, Kim YH, Morgan KG, Lee YH. Augmented sphingosylphosphorylcholine-induced
$Ca^{2+}$ -sensitization of mesenteric artery contraction in spontaneously hypertensive rat. Naunyn Schmiedebergs Arch Pharmacol. 2006;373:30-36. https://doi.org/10.1007/s00210-006-0036-7 - Choi SK, Ahn DS, Lee YH. Comparison of contractile mechanisms of sphingosylphosphorylcholine and sphingosine-1-phosphate in rabbit coronary artery. Cardiovasc Res. 2009;82:324-332.
- Durlu-Kandilci NT, Brading AF. Involvement of Rho kinase and protein kinase C in carbachol-induced calcium sensitization in beta-escin skinned rat and guinea-pig bladders. Br J Pharmacol. 2006;148:376-384.
- Niiro N, Koga Y, Ikebe M. Agonist-induced changes in the phosphorylation of the myosin- binding subunit of myosin light chain phosphatase and CPI17, two regulatory factors of myosin light chain phosphatase, in smooth muscle. Biochem J. 2003;369:117-128. https://doi.org/10.1042/BJ20021040
- Chiba Y, Takeyama H, Sakai H, Misawa M. Effects of Y-27632 on acetylcholine-induced contraction of intact and permeabilized intrapulmonary bronchial smooth muscles in rats. Eur J Pharmacol. 2001;427:77-82. https://doi.org/10.1016/S0014-2999(01)01225-0
-
Johnson RP, El-Yazbi AF, Takeya K, Walsh EJ, Walsh MP, Cole WC.
$Ca^{2+}$ sensitization via phosphorylation of myosin phosphatase targeting subunit at threonine-855 by Rho kinase contributes to the arterial myogenic response. J Physiol. 2009;587:2537-2553. https://doi.org/10.1113/jphysiol.2008.168252 - Otto B, Steusloff A, Just I, Aktories K, Pfitzer G. Role of Rho proteins in carbachol-induced contractions in intact and per-meabilized guinea-pig intestinal smooth muscle. J Physiol. 1996;496:317-329. https://doi.org/10.1113/jphysiol.1996.sp021687
-
Gong MC, Iizuka K, Nixon G, Browne JP, Hall A, Eccleston JF, Sugai M, Kobayashi S, Somlyo AV, Somlyo AP. Role of guanine nucleotide-binding proteins--ras-family or trimeric proteins or both--in
$Ca^{2+}$ sensitization of smooth muscle. Proc Natl Acad Sci U S A. 1996;93:1340-1345 https://doi.org/10.1073/pnas.93.3.1340 -
Wilson DP, Susnjar M, Kiss E, Sutherland C, Walsh MP. Thromboxane A2-induced contraction of rat caudal arterial smooth muscle involves activation of
$Ca^{2+}$ entry and$Ca^{2+}$ sensitization: Rho-associated kinase-mediated phosphorylation of MYPT1 at Thr-855, but not Thr-697. Biochem J. 2005;389:763-774. https://doi.org/10.1042/BJ20050237 -
Kitazawa T, Takizawa N, Ikebe M, Eto M. Reconstitution of protein kinase C-induced contractile
$Ca^{2+}$ sensitization in triton X-100-demembranated rabbit arterial smooth muscle. J Physiol. 1999;520:139-152. https://doi.org/10.1111/j.1469-7793.1999.00139.x - Kobayashi S, Somlyo AP, Somlyo AV. Guanine nucleotide- and inositol 1,4,5-trisphosphate-induced calcium release in rabbit main pulmonary artery. J Physiol. 1988;403:601-619. https://doi.org/10.1113/jphysiol.1988.sp017267
- Antonny B, Sukumar M, Bigay J, Chabre M, Higashijima T. The mechanism of aluminum-independent G-protein activation by fluoride and magnesium. 31P NMR spectroscopy and fluorescence kinetic studies. J Biol Chem. 1993;268:2393-2402.
- Blackmore PF, Exton JH. Studies on the hepatic calcium-mobilizing activity of aluminum fluoride and glucagon. Modulation by cAMP and phorbol myristate acetate. J Biol Chem. 1986;261:11056-11063.
- Cockcroft S, Taylor JA. Fluoroaluminates mimic guanosine 5'-[gamma-thio]triphosphate in activating the polyphosphoinositide phosphodiesterase of hepatocyte membranes. Role for the guanine nucleotide regulatory protein Gp in signal transduction. Biochem J. 1987;241:409-414. https://doi.org/10.1042/bj2410409
- Gilman AG. Guanine nucleotide-binding regulatory proteins and dual control of adenylate cyclase. J Clin Invest. 1984;73:1-4. https://doi.org/10.1172/JCI111179
- Kanaho Y, Moss J, Vaughan M. Mechanism of inhibition of transducin GTPase activity by fluoride and aluminum. J Biol Chem. 1985;260:11493-11497.
- Bigay J, Deterre P, Pfister C, Chabre M. Fluoroaluminates activate transducin-GDP by mimicking the gamma-phosphate of GTP in its binding site. FEBS Lett. 1985;191:181-185. https://doi.org/10.1016/0014-5793(85)80004-1
- Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T, Tamakawa H, Yamagami K, Inui J, Maekawa M, Narumiya S. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature. 1997;389:990-994. https://doi.org/10.1038/40187
- Wirth A, Benyo Z, Lukasova M, Leutgeb B, Wettschureck N, Gorbey S, Orsy P, Horvath B, Maser-Gluth C, Greiner E, Lemmer B, Schutz G, Gutkind JS, Offermanns S. G12-G13-LARG-mediated signaling in vascular smooth muscle is required for salt-induced hypertension. Nat Med. 2008;14:64-68. https://doi.org/10.1038/nm1666
- Lohn M, Plettenburg O, Ivashchenko Y, Kannt A, Hofmeister A, Kadereit D, Schaefer M, Linz W, Kohlmann M, Herbert JM, Janiak P, O'Connor SE, Ruetten H. Pharmacological characterization of SAR407899, a novel rho-kinase inhibitor. Hypertension. 2009;54:676-683. https://doi.org/10.1161/HYPERTENSIONAHA.109.134353
피인용 문헌
- Expression of Na+-K+-2Cl− Cotransporter 1 Is Epigenetically Regulated During Postnatal Development of Hypertension vol.24, pp.12, 2010, https://doi.org/10.1038/ajh.2011.136
- Upregulation of the Na+-K+-2Cl− cotransporter 1 via histone modification in the aortas of angiotensin II-induced hypertensive rats vol.35, pp.8, 2010, https://doi.org/10.1038/hr.2012.37
- 3′,4′-Dihydroxyflavonol reduces vascular contraction through Ca2+ desensitization in permeabilized rat mesenteric artery vol.385, pp.2, 2010, https://doi.org/10.1007/s00210-011-0697-8
- Involvement of inhibitor kappa B kinase 2 (IKK2) in the regulation of vascular tone vol.98, pp.10, 2010, https://doi.org/10.1038/s41374-018-0061-4