• 제목/요약/키워드: Calcium-binding site

검색결과 40건 처리시간 0.029초

재조합 Saccharomyces cerevisiae로부터 인체 리포코틴-I의 분비 생산 및 정제 (Production and Purification of Human Lipocortin-I Secreted by Recombinant Saccharomyces cerevisiae)

  • 김병문;정봉현
    • KSBB Journal
    • /
    • 제10권3호
    • /
    • pp.343-348
    • /
    • 1995
  • LeI은 스테로이드를 통울에 투여하였을 때 분비가 촉진되어 항염증성 효과를 나타내는 calcium 의 존성 phospholipid 결합 단백질이다. S. cerevisiae는 대장균과 통물세포의 장점을 모두 가지고 있으므로 동물세포 유래의 이종 단백질의 분비 생산에 많이 이용되고 있다. 본 연구에서는 GAL10 promoter­p ppL-LCI유전자 LCI terminator로 구성된 pYGLPT5 로 LCI을 S. cerevisiae SEY2102에서 발현 분비시키고 각 분획으로 나누어 LCI양을 비교한 결과 protoplast 68.6 %. periplasmic 24 %, culture supernatant 7.4%로 분포하였다. pYGLPT5로 형질전환된 S. cereviswe 2102를 유가 배양한 결과, 최종적인 LCI의 생산량은 약 $500mg/\ell$ 였다. LCI은 N 말단 부근에 $CA^{++}$ 결합부위가 있으므로 이를 이용하여 hydroxylapatite column chromatography로 정 제하 였다. 배지로 분비된 34kDa LCI을 ultrafiltration 과 hydroxylapatite column chromatography 의 두 단계로 순도 99% 이상으로 정제할 수 있었다.

  • PDF

Alkaline induced-cation crosslinking biopolymer soil treatment and field implementation for slope surface protection

  • Minhyeong Lee;Ilhan Chang;Seok-Jun Kang;Dong-Hyuk Lee;Gye-Chun Cho
    • Geomechanics and Engineering
    • /
    • 제33권1호
    • /
    • pp.29-40
    • /
    • 2023
  • Xanthan gum and starch compound biopolymer (XS), an environmentally friendly soil-binding material produced from natural resources, has been suggested as a slope protection material to enhance soil strength and erosion resistance. Insufficient wet strength and the consequent durability concerns remain, despite XS biopolymer-soil treatment showing high strength and erosion resistance in the dried state, even with a small dosage of soil mass. These concerns need to be solved to improve the field applicability and post-stability of this treatment. This study explored the utilization of an alkaline-based cation crosslinking method using calcium hydroxide and sodium hydroxide to induce non-thermal gelation, resulting in the enhancement of the wet strength and durability of biopolymer-treated soil. Laboratory experiments were conducted to assess the unconfined compressive strength and cyclic wetting-drying durability performance of the treated soil using a selected recipe based on a preliminary gel formation test. The results demonstrated that the uniformity of the gel structure and gelling time varied depending on the ratio of crosslinkers to biopolymer; consequently, the strength of the soil was affected. Subsequently, site soil treated with the recipe, which showed the best performance in indoor assessment, was implemented on the field slope at the bridge abutment via compaction and pressurized spraying methods to assess feasibility in field implementation. Moreover, the variation in surface soil hardness was monitored periodically for one year. Both slopes implemented by the two construction methods showed sufficient stability against detachment and scouring, with a higher soil hardness index than the natural slope for a year.

Adsorption of Mercury(II) Chloride and Carbon Dioxide on Graphene/Calcium Oxide (0 0 1)

  • Mananghaya, Michael;Yu, Dennis;Santos, Gil Nonato;Rodulfo, Emmanuel
    • 한국재료학회지
    • /
    • 제26권6호
    • /
    • pp.298-305
    • /
    • 2016
  • In this work, recent progress on graphene/metal oxide composites as advanced materials for $HgCl_2$ and $CO_2$ capture was investigated. Density Functional Theory calculations were used to understand the effects of temperature on the adsorption ability of $HgCl_2$ and water vapor on $CO_2$ adsorption on CaO (001) with reinforced carbon-based nanostructures using B3LYP functional. Understanding the mechanism by which mercury and $CO_2$ adsorb on graphene/CaO (g-CaO) is crucial to the design and fabrication of effective capture technologies. The results obtained from the optimized geometries and frequencies of the proposed cluster site structures predicted that with respect to molecular binding the system possesses unusually large $HgCl_2$ ($0.1-0.4HgCl_2g/g$ sorbent) and $CO_2$ ($0.2-0.6CO_2g/g$ sorbent) uptake capacities. The $HgCl_2$ and $CO_2$ were found to be stable on the surface as a result of the topology and a strong interaction with the g-CaO system; these results strongly suggest the potential of CaO-doped carbon materials for $HgCl_2$ and $CO_2$ capture applications, the functional gives reliable answers compared to available experimental data.

The Effect of Minocycline on Motor Neuron Recovery and Neuropathic Pain in a Rat Model of Spinal Cord Injury

  • Cho, Dong-Charn;Cheong, Jin-Hwan;Yang, Moon-Sul;Hwang, Se-Jin;Kim, Jae-Min;Kim, Choong-Hyun
    • Journal of Korean Neurosurgical Society
    • /
    • 제49권2호
    • /
    • pp.83-91
    • /
    • 2011
  • Objective : Minocycline, a second-generation tetracycline-class antibiotic, has been well established to exert a neuroprotective effect in animal models and neurodegenerative disease through the inhibition of microglia. Here, we investigated the effects of minocycline on motor recovery and neuropathic pain in a rat model of spinal cord injury. Methods : To simulate spinal cord injury, the rats' spinal cords were hemisected at the 10th thoracic level (T10). Minocycline was injected intraperitoneally, and was administered 30 minutes prior surgery and every second postoperative day until sacrifice 28 days after surgery. Motor recovery was assessed via the Basso-Beattie-Bresnahan test Mechanical hyperalgesia was measured throughout the 28-day post -operative course via the von Frey test Microglial and astrocyte activation was assessed by immunohistochemical staining for ionized calcium binding adaptor molecule 1 (lba1) and glial fibrillary acidic protein (GFAP) at two sites: at the level of hemisection and at the 5th lumbar level (L5). Results : In rats, spinal cord hemisection reduced locomotor function and induced a mechanical hyperalgesia of the ipsilateral hind limb. The expression of lba1 and GFAP was also increased in the dorsal and ventral horns of the spinal cord at the site of hemisection and at the L5 level. Intraperitoneal injection of minocycline facilitated overall motor recovery and attenuated mechanical hyperalgesia. The expression of lba1 and GFAP in the spinal cord was also reduced in rats treated with minocycline. Conclusion : By inhibiting microglia and astrocyte activation, minocycline may facilitate motor recovery and attenuate mechanical hyperalgesia in individuals with spinal cord injuries.

Analysis of Porcine $\beta$-casein Gene Promoter by Site-directed Mutagenesis

  • Chung, Hee-Kyoung;Seong, Hwan-Hoo;Im, Seok-Ki;Lee, Hyun-Gi;Kim, Soon-Jeung;Lee, Poongyeong;Lee, Yun-Keun;Chang, Won-Kyong;Moosik Kwon
    • 한국수정란이식학회:학술대회논문집
    • /
    • 한국수정란이식학회 2002년도 국제심포지엄
    • /
    • pp.71-71
    • /
    • 2002
  • Promoters for milk proteins have been used far producing transgenic animals due to their temporal and spatial expression patterns. ${\beta}$-casein, a calcium-sensitive casein, is a major milk protein that corresponds ca. 30 per cent of total milk protein. Expression of ${\beta}$-casein is controlled by lactogenic hormones such as prolactin (PRL), composite response elements (CoREs) and transcription factors. CoREs are clusters of transcription factor binding sites containing both positive and negative regulatory elements. ${\beta}$-casein gene promoter contains various regions (CoREs) for gene transcription. We analyzed the promoter region by mutagenesis using exonuclease III and linker-scanning. Transcription control elements usually are positioned in 5'-flanking region of the gene. However, in some cases, these elements are located in other regions such as intron 1. The nucleotide sequences of ${\beta}$-casein promote. region has been reported (E12614). However, the properties of the promoter is not yet clear. In this study, we plan to investigate the properties of cis-regulating elements of porcine ${\beta}$-casein by mutation analysis and expression analysis using dual-luciferase repoter assay system.

  • PDF

흰쥐에서 RGDS tetrapeptide가 소 심낭 이식절편의 피하이식 후 석회화에 미치는 영향 (The Effects of RGDS Tetrapeptide on the Calcification of the Bovine Pericardium Transplanted Subcutaneously in Rats)

  • 진웅;이주현;김치경;이선희
    • Journal of Chest Surgery
    • /
    • 제35권2호
    • /
    • pp.94-101
    • /
    • 2002
  • 배경: 모든 조직판막은 면역학적인 불활성화 및 내구성 강화를 위하여 이식 전 터치를 필요로 한다. 그러나 조직 판막은 이식 후 점차적인 석회화 과정을 보이며, 결국 판막의 기능을 상실하게 된다. 최근 석회화 과정의 병리기전에 관한 연구에서는 이식된 조직판막의 석회화 부위에서 정상 골성석회화에 관련하는 결합단백이 검출되기에 이르렀다. 본 실험은 이러한 결합단백의 공통 결합부인 RGD(Arg-Gly-Asp)를 갖는 RGDStetrapeptide를 이식 전 조직에 처치하여 이식 후 숙주의 골성석회화 관련 결합단백의 결합을 억제하는 것이 석회화과정에 영향을 줄 수 있는가를 확인하기 위하여 계획되었다. 대상 및 방법: 실험은 소 심낭을 0.6%글루타알데하이드에 처치한 후 이를 작은 절편으로 나누어 1군은 생리식염수에서 60분간 처리, 2 군은 RGDS와 같은 분자량을 갖는 0.5% GRSD tetrapeptide에서 60분간 처리, 3군은 0.5% RGDS에서 30분간 처리, 4군은 0.5% RGDS에서 60분간 처리, 5군은 0.5% RGDS에서 120분간 처리하였다. 이렇게 처리된 소 심낭절편을 흰쥐의 복부 피하에 이식하였으며, 30일 후 채취하여 방사선 검사와 생화학적 검사 및 조직학적 검사를 시행하여 이식절편의 석회화 정도를 판정하였다. 결과: 이식절편을 방사선 촬영 후, 측정한 음영도는 3, 4, 5군에서 48.00$\pm$3.57, 43.67$\pm$2.31, 42.58$\pm$2.47로 1, 2군의 68.42$\pm$3.06, 64.25+5.58과 통계학적인 차이를 보였다(p<7.05). 1군과 2군간의 유의한 차이는 없었다(p=0.105). 생화학적 검사에서 이식절편의 칼슘 총량은 1군 33.09$\pm$6.59mg, 2군 28.12+5.5mg,, 3군 25.42+7.67mg,, 4군 20.51$\pm$5.11mg, 5군 15.43$\pm$4.25mg을 보여, 5군이 1, 2, 3군에 비하여 통계적으로 유의하게 석회화 정도가 감소되어 있었다(<0.05). 1군과 2군간에 유의한 차이는 없었다(p=0.388). 조직학적 검사에서는 1, 2군에서 현저한 칼슘침착을 확인할 수 있었으며 3, 4군은 적은 양의 칼슘침착을 보여주는 반면, 5군에서는 뚜렷할 칼슘 침착 부를 확인할 수 없었다. 결론: 이상의 결과에서 이식 전 RGDS tetrapeptide를 처치하는 것이 흰쥐의 똑부 피하에 이식된 소 심낭절편의 석회화를 억제하는 효과가 있음을 확인할 수 있었다.

칼모듈린에 결합하는 대두 Ca2+-ATPase 2 (SCA2)의 분리 및 특성 분석 (Isolation and Characterization of a Calmodulin-binding Ca2+-ATPase 2 (SCA2) in Soybean)

  • 박형철;김호수;이상민;조현설;정우식
    • 생명과학회지
    • /
    • 제21권5호
    • /
    • pp.671-677
    • /
    • 2011
  • 대두의 세포막에 존재하는 SCA1은 칼모듈린에 의해서 조절된다는 내용을 이전에 보고하였다. 본 연구에서는 대두의 $Ca^{2+}$-ATPase인 SCA2에 관한 특성을 연구하였다. SCA2는 SCA1과 아미노산 서열 비교에서 78%로 높은 유사성을 나타내며, 10개의 transmembrane 도메인이 존재하는 것을 확인하였다. CaM overaly assay로부터, SCA2는 칼슘에 의존적인 방법으로 칼모듈린과 결합한다는 것을 보여주었으며, Southern blot 분석 결과, 대두의 genome에는 두 종류의 $Ca^{2+}$-ATPase가 존재하는 것으로 보인다. SCA2의 $Ca^{2+}$-ATPase 효소활성을 확인하고자 yeast mutant를 이용하여 complementation assay를 수행해 보면, SCA2가 $Ca^{2+}$-ATPase의 효소활성을 가지는 것을 보여 주었다. 이러한 결과들은 SCA2가 식물에 존재하는 type IIB $Ca^{2+}$-ATPase들과 구조적으로 높은 유사성을 가진다는 것을 시사한다.

Molecular and Biochemical Characteristics of ${\beta}$-Propeller Phytase from Marine Pseudomonas sp. BS10-3 and Its Potential Application for Animal Feed Additives

  • Nam, Seung-Jeung;Kim, Young-Ok;Ko, Tea-Kyung;Kang, Jin-Ku;Chun, Kwang-Hoon;Auh, Joong-Hyuck;Lee, Chul-Soon;Lee, In-Kyu;Park, Sunghoon;Oh, Byung-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권10호
    • /
    • pp.1413-1420
    • /
    • 2014
  • Phytate is an antinutritional factor that impacts the bioavailability of essential minerals such as $Ca^{2+}$, $Mg^{2+}$, $Mn^{2+}$, $Zn^{2+}$, and $Fe^{2+}$ by forming insoluble mineral-phytate salts. These insoluble mineral-phytate salts are hydrolyzed rarely by monogastric animals, because they lack the hydrolyzing phytases and thus excrete the majority of them. The ${\beta}$-propeller phytases (BPPs) hydrolyze these insoluble mineral-phytate salts efficiently. In this study, we cloned a novel BPP gene from a marine Pseudomonas sp. This Pseudomonas BPP gene (PsBPP) had low sequence identity with other known phytases and contained an extra internal repeat domain (residues 24-279) and a typical BPP domain (residues 280-634) at the C-terminus. Structure-based sequence alignment suggested that the N-terminal repeat domain did not possess the active-site residues, whereas the C-terminal BPP domain contained multiple calcium-binding sites, which provide a favorable electrostatic environment for substrate binding and catalytic activity. Thus, we overexpressed the BPP domain from Pseudomonas sp. to potentially hydrolyze insoluble mineral-phytate salts. Purified recombinant PsBPP required $Ca^{2+}$ or $Fe^{2+}$ for phytase activity, indicating that PsBPP hydrolyzes insoluble $Fe^{2+}$-phytate or $Ca^{2+}$-phytate salts. The optimal temperature and pH for the hydrolysis of $Ca^{2+}$-phytate by PsBPP were $50^{\circ}C$ and 6.0, respectively. Biochemical and kinetic studies clearly showed that PsBPP efficiently hydrolyzed $Ca^{2+}$-phytate salts and yielded myo-inositol 2,4,6-trisphosphate and three phosphate groups as final products. Finally, we showed that PsBPP was highly effective for hydrolyzing rice bran with high phytate content. Taken together, our results suggest that PsBPP has great potential in the animal feed industry for reducing phytates.

Establishment of a NanoBiT-Based Cytosolic Ca2+ Sensor by Optimizing Calmodulin-Binding Motif and Protein Expression Levels

  • Nguyen, Lan Phuong;Nguyen, Huong Thi;Yong, Hyo Jeong;Reyes-Alcaraz, Arfaxad;Lee, Yoo-Na;Park, Hee-Kyung;Na, Yun Hee;Lee, Cheol Soon;Ham, Byung-Joo;Seong, Jae Young;Hwang, Jong-Ik
    • Molecules and Cells
    • /
    • 제43권11호
    • /
    • pp.909-920
    • /
    • 2020
  • Cytosolic Ca2+ levels ([Ca2+]c) change dynamically in response to inducers, repressors, and physiological conditions, and aberrant [Ca2+]c concentration regulation is associated with cancer, heart failure, and diabetes. Therefore, [Ca2+]c is considered as a good indicator of physiological and pathological cellular responses, and is a crucial biomarker for drug discovery. A genetically encoded calcium indicator (GECI) was recently developed to measure [Ca2+]c in single cells and animal models. GECI have some advantages over chemically synthesized indicators, although they also have some drawbacks such as poor signal-to-noise ratio (SNR), low positive signal, delayed response, artifactual responses due to protein overexpression, and expensive detection equipment. Here, we developed an indicator based on interactions between Ca2+-loaded calmodulin and target proteins, and generated an innovative GECI sensor using split nano-luciferase (Nluc) fragments to detect changes in [Ca2+]c. Stimulation-dependent luciferase activities were optimized by combining large and small subunits of Nluc binary technology (NanoBiT, LgBiT:SmBiT) fusion proteins and regulating the receptor expression levels. We constructed the binary [Ca2+]c sensors using a multicistronic expression system in a single vector linked via the internal ribosome entry site (IRES), and examined the detection efficiencies. Promoter optimization studies indicated that promoter-dependent protein expression levels were crucial to optimize SNR and sensitivity. This novel [Ca2+]c assay has high SNR and sensitivity, is easy to use, suitable for high-throughput assays, and may be useful to detect [Ca2+]c in single cells and animal models.

인체 S100A6 단백질에 특이한 단일클론 항체 (Characterization of the Monoclonal Antibody Specific to Human S100A6 Protein)

  • 김재화;윤선영;주종혁;강호범;이영희;최용경;최인성
    • IMMUNE NETWORK
    • /
    • 제2권3호
    • /
    • pp.175-181
    • /
    • 2002
  • Background: S100A6 is a calcium-binding protein overexpressed in several tumor cell lines including melanoma with high metastatic activity and involved in various cellular processes such as cell division and differentiation. To detect S100A6 protein in patient' samples (ex, blood or tissue), it is essential to produce a monoclonal antibody specific to the protein. Methods: First, cDNA coding for ORF region of human S100A6 gene was amplified and cloned into the expression vector for GST fusion protein. We have produced recombinant S100A6 protein and subsequently, monoclonal antibodies to the protein. The specificity of anti-S100A6 monoclonal antibody was confirmed using recombinant S100A recombinant proteins of other S100A family (GST-S100A1, GST-S100A2 and GST-S100A4) and the cell lysates of several human cell lines. Also, to identify the specific recognition site of the monoclonal antibody, we have performed the immunoblot analysis with serially deleted S100A6 recombinant proteins. Results: GST-S100A6 recombinant protein was induced and purified. And then S100A6 protein excluding GST protein was obtained and monoclonal antibody to the protein was produced. Monoclonal antibody (K02C12-1; patent number, 330311) has no cross-reaction to several other S100 family proteins. It appears that anti-S100A6 monoclonal antibody reacts with the region containing the amino acid sequence from 46 to 61 of S100A6 protein. Conclusion: These data suggest that anti-S100A6 monoclonal antibody produced can be very useful in development of diagnostic system for S100A6 protein.