Browse > Article
http://dx.doi.org/10.3740/MRSK.2016.26.6.298

Adsorption of Mercury(II) Chloride and Carbon Dioxide on Graphene/Calcium Oxide (0 0 1)  

Mananghaya, Michael (De La Salle University)
Yu, Dennis (De La Salle University)
Santos, Gil Nonato (De La Salle University)
Rodulfo, Emmanuel (De La Salle University)
Publication Information
Korean Journal of Materials Research / v.26, no.6, 2016 , pp. 298-305 More about this Journal
Abstract
In this work, recent progress on graphene/metal oxide composites as advanced materials for $HgCl_2$ and $CO_2$ capture was investigated. Density Functional Theory calculations were used to understand the effects of temperature on the adsorption ability of $HgCl_2$ and water vapor on $CO_2$ adsorption on CaO (001) with reinforced carbon-based nanostructures using B3LYP functional. Understanding the mechanism by which mercury and $CO_2$ adsorb on graphene/CaO (g-CaO) is crucial to the design and fabrication of effective capture technologies. The results obtained from the optimized geometries and frequencies of the proposed cluster site structures predicted that with respect to molecular binding the system possesses unusually large $HgCl_2$ ($0.1-0.4HgCl_2g/g$ sorbent) and $CO_2$ ($0.2-0.6CO_2g/g$ sorbent) uptake capacities. The $HgCl_2$ and $CO_2$ were found to be stable on the surface as a result of the topology and a strong interaction with the g-CaO system; these results strongly suggest the potential of CaO-doped carbon materials for $HgCl_2$ and $CO_2$ capture applications, the functional gives reliable answers compared to available experimental data.
Keywords
adsorption; computer modeling and simulation; desorption; nanostructures;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 M. Mananghaya, M. Promentilla, K. Aviso and R. Tan, J. Mol. Liq., 215, 780 (2016).   DOI
2 M. Mananghaya, D. Yu, G. N. Santos and E. Rodulfo, Int. J. Hydrogen Energy http://dx.doi.org/10.1016/j.ijhydene.2016.05.225 (2016).
3 M. Mananghaya, D. Yu, G. N. Santos and E. Rodulfo, Sci. Rep. 6, 27370; doi:10.1038/srep27370 (2016).   DOI
4 M. Mananghaya, A. Beltran and L. P. Belo, Mater. Chem. Phys. http://dx.doi.org/10.1016/j.matchemphys.2016.06.018 0254-0584 (2016).
5 H. J. Freund and V. Staemmler, Rep. of Prog. in Phys., 59, 283 (1996).   DOI
6 G. Pacchioni, Surface Rev. Lett., 7, 277 (2000).
7 C. Noguera, Surface Rev. Lett., 8, 121 (2001).
8 P. Broqvist and I. Panas, Surface Sci., 554, 262 (2004).   DOI
9 S. P. Decker, A. Khaleel and K. Klabunde, J. Environ. Sci. Technol., 36, 762 (2002).   DOI
10 A. Gross, Surface Sci., 500, 347 (2002).   DOI
11 R. A. Van santen, J. Chem. Rev., 95, 637 (1995).   DOI
12 R. A. Van santen, Catalyts Rev. Sci. Eng., 37, 557 (1995).   DOI
13 B. K. Rao, J. Chem. Phys., 116, 1343 (2002).   DOI
14 G. L. Gutsev and P. Jena, J. Phys. Chem. A, 104, 5374 (2002).
15 G. Pacchioni and F. Illas, J. Am. Chem. Soc., 116, 10152 (1994).   DOI
16 F. Bawa, Phys. Chem. Chem. Phys., 3, 3042 (2001).   DOI
17 E. J. Karlsen and L. G. M. Pettersson, J. Phys. Chem. B, 107, 7795 (2003).   DOI
18 C. Di Valentin and G. Pacchioni, Surface Sci., 556, 145 (2004).   DOI
19 M. B. Jensen, O. Swang and U. Olsbye, J. Phys. Chem. B, 109, 16774 (2005).   DOI
20 J. Rogal, Fachbereich Physik, Freie Universitat Berlin (2006).
21 W. Kolodziejczyk, S. Roszak and Leszczynski, J. Chem. Phys. Lett., 450, 138 (2007).   DOI
22 I. V. Lightcap, T. H. Kosel and P. V. Kamat, Nano. Lett., 10, 577 (2010).   DOI
23 A. D. Becke, Phys. Rev. A, 38, 3098 (1988).   DOI
24 R. S. Mulliken, J. Chem. Phys., 23, 1833 (1955).   DOI
25 F. D'Souza, M. E. Zandler, P. M. Smith, G. R. Deviprasad, K. Arkady, M. Fujitsuka and O. Ito, J. Phys. Chem. A, 106, 649 (2002).   DOI
26 M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis and J. A. Montgomery Jr. J. Comp. Chem., 14, 1347 (1993).   DOI
27 J. Tomasi, B. Mennucci and R. Cammi, Chem. Rev., 105, 2999 (2005).   DOI
28 L. Onsager and J. Amer. Chem. Soc., 58, 1486 (1936).   DOI
29 E. Cances and B. Mennucci, J. Mathem. Chem., 23, 309 (1998).   DOI
30 E. Cances, B. Mennucci and J. J. Tomasi, Chem. Phys., 107, 3032 (1997).
31 D. Loffreda, Surface Sci., 600, 2103 (2006).   DOI
32 N. M. O'Boyle, A. L. Tenderholt and K. M. J. Langner, Comp. Chem., 29, 839 (2008).   DOI
33 B. M. Bode and M. S. Gordon, J. Mol. Graphics Mod., 16, 133 (1998).   DOI
34 C. Claudio and A. S. Stephen, Dalton trans., 42, 4670 (2013).   DOI
35 S. P. Decker, A. Khaleel and K. J. Klabunde, Environ. Sci. Technol., 36, 762 (2002).   DOI
36 M. Mananghaya, J. Chem. Sci., 127, 751 (2015).   DOI
37 M. Mananghaya, Bull. Korean Chem. Soc., 35, 253 (2014).   DOI
38 M. Mananghaya, J. Korean Chem. Soc., 56, 34 (2012).   DOI
39 M. Mananghaya, Int. J. Hydrog. Energy, 40, 9352 (2015).   DOI
40 M. Mananghaya, J. Korean Chem. Soc., 59, 429 (2015).   DOI
41 M. Mananghaya, M. J. Chem. Sci., 126, 1737 (2014).   DOI
42 M. Mananghaya, E. Rodulfo and G. N. Santos, J. Nanotechnol., 2012, 780815 (2012).
43 M. Mananghaya, E. Rodulfo and G. N. Santos, J. Nanomater., 2012, 104891 (2012).
44 M. Mananghaya, J. Mol. Liq., 212, 592 (2015).   DOI
45 S. F. Rastegar, A. A. Peyghan and N. L. Hadipour, App. Surf. Sci., 265, 412 (2013).   DOI
46 M. Pashangpour and A. A. Peyghan, J. Mol. Modeling, 21, 1 (2015).   DOI
47 A. A. Peyghan, M. Noei, M. B. Tabar. J. mol. model., 19, 3007 (2013).   DOI