• 제목/요약/키워드: Calcium-Calmodulin-Dependent Protein Kinases

검색결과 5건 처리시간 0.024초

Isolation and Characterization of a Novel Calcium/Calmodulin-Dependent Protein Kinase, AtCK, from Arabidopsis

  • Jeong, Jae Cheol;Shin, Dongjin;Lee, Jiyoung;Kang, Chang Ho;Baek, Dongwon;Cho, Moo Je;Kim, Min Chul;Yun, Dae-Jin
    • Molecules and Cells
    • /
    • 제24권2호
    • /
    • pp.276-282
    • /
    • 2007
  • Protein phosphorylation is one of the major mechanisms by which eukaryotic cells transduce extracellular signals into intracellular responses. Calcium/calmodulin ($Ca^{2+}/CaM$)-dependent protein phosphorylation has been implicated in various cellular processes, yet little is known about $Ca^{2+}/CaM$-dependent protein kinases (CaMKs) in plants. From an Arabidopsis expression library screen using a horseradish peroxidase-conjugated soybean calmodulin isoform (SCaM-1) as a probe, we isolated a full-length cDNA clone that encodes AtCK (Arabidopsis thaliana calcium/calmodulin-dependent protein kinase). The predicted structure of AtCK contains a serine/threonine protein kinase catalytic domain followed by a putative calmodulin-binding domain and a putative $Ca^{2+}$-binding domain. Recombinant AtCK was expressed in E. coli and bound to calmodulin in a $Ca^{2+}$-dependent manner. The ability of CaM to bind to AtCK was confirmed by gel mobility shift and competition assays. AtCK exhibited its highest levels of autophosphorylation in the presence of 3 mM $Mn^{2+}$. The phosphorylation of myelin basic protein (MBP) by AtCK was enhanced when AtCK was under the control of calcium-bound CaM, as previously observed for other $Ca^{2+}/CaM$-dependent protein kinases. In contrast to maize and tobacco CCaMKs (calcium and $Ca^{2+}/CaM$-dependent protein kinase), increasing the concentration of calmodulin to more than $3{\mu}M$ suppressed the phosphorylation activity of AtCK. Taken together our results indicate that AtCK is a novel Arabidopsis $Ca^{2+}/CaM$-dependent protein kinase which is presumably involved in CaM-mediated signaling.

Expression and phosphorylation analysis of soluble proteins and membrane-localised receptor-like kinases from Arabidopsis thaliana in Escherichia coli

  • Oh, Eun-Seok;Eva, Foyjunnaher;Kim, Sang-Yun;Oh, Man-Ho
    • Journal of Plant Biotechnology
    • /
    • 제45권4호
    • /
    • pp.315-321
    • /
    • 2018
  • Molecular and functional characterization of proteins and their levels is of great interest in understanding the mechanism of diverse cellular processes. In this study, we report on the convenient Escherichia coli-based protein expression system that allows recombinant of soluble proteins expression and cytosolic domain of membrane-localised kinases, followed by the detection of autophosphorylation activity in protein kinases. This approach is applied to regulatory proteins of Arabidopsis thaliana, including 14-3-3, calmodulin, calcium-dependent protein kinase, TERMINAL FLOWER 1(TFL1), FLOWERING LOCUS T (FT), receptor-like cytoplasmic kinase and cytoplasmic domain of leucine-rich repeat-receptor like kinase proteins. Our Western blot analysis which uses phospho-specific antibodies showed that five putative LRR-RLKs and two putative RLCKs have autophosphorylation activity in vitro on threonine and/or tyrosine residue(s), suggesting their potential role in signal transduction pathways. Our findings were also discussed in the broader context of recombinant expression and biochemical analysis of soluble and membrane-localised receptor kinases in microbial systems.

Increased calcium-mediated cerebral processes after peripheral injury: possible role of the brain in complex regional pain syndrome

  • Nahm, Francis Sahngun;Lee, Jae-Sung;Lee, Pyung-Bok;Choi, Eunjoo;Han, Woong Ki;Nahm, Sang-Soep
    • The Korean Journal of Pain
    • /
    • 제33권2호
    • /
    • pp.131-137
    • /
    • 2020
  • Background: Among various diseases that accompany pain, complex regional pain syndrome (CRPS) is one of the most frustrating for patients and physicians. Recently, many studies have shown functional and anatomical abnormalities in the brains of patients with CRPS. The calcium-related signaling pathway is important in various physiologic processes via calmodulin (CaM) and calcium-calmodulin kinase 2 (CaMK2). To investigate the cerebral mechanism of CRPS, we measured changes in CaM and CaMK2 expression in the cerebrum in CRPS animal models. Methods: The chronic post-ischemia pain model was employed for CRPS model generation. After generation of the animal models, the animals were categorized into three groups based on changes in the withdrawal threshold for the affected limb: CRPS-positive (P), CRPS-negative (N), and control (C) groups. Western blot analysis was performed to measure CaM and CaMK2 expression in the rat cerebrum. Results: Animals with a decreased withdrawal threshold (group P) showed a significant increment in cerebral CaM and CaMK2 expression (P = 0.013 and P = 0.021, respectively). However, groups N and C showed no difference in CaM and CaMK2 expression. Conclusions: The calcium-mediated cerebral process occurs after peripheral injury in CRPS, and there can be a relationship between the cerebrum and the pathogenesis of CRPS.

Molecular Cloning of Plasmodium vivax Calcium-Dependent Protein Kinase 4

  • Choi, Kyung-Mi;Kim, Jung-Yeon;Moon, Sung-Ung;Lee, Hyeong-Woo;Sattabongkot, Jetsumon;Na, Byoung-Kuk;Kim, Dae-Won;Suh, Eun-Jung;Kim, Yeon-Joo;Cho, Shin-Hyeong;Lee, Ho-Sa;Rhie, Ho-Gun;Kim, Tong-Soo
    • Parasites, Hosts and Diseases
    • /
    • 제48권4호
    • /
    • pp.319-324
    • /
    • 2010
  • A family of calcium-dependent protein kinases (CDPKs) is a unique enzyme which plays crucial roles in intracellular calcium signaling in plants, algae, and protozoa. CDPKs of malaria parasites are known to be key regulators for stage-specific cellular responses to calcium, a widespread secondary messenger that controls the progression of the parasite. In our study, we identified a gene encoding Plasmodium vivax CDPK4 (PvCDPK4) and characterized its molecular property and cellular localization. PvCDPK4 was a typical CDPK which had well-conserved N-terminal kinase domain and C-terminal calmodulin-like structure with 4-EF hand motifs for calcium-binding. The recombinant protein of EF hand domain of PvCDPK4 was expressed in Echerichia coli and a 34 kDa product was obtained. Immunofluorescence assay by confocal laser microscopy revealed that the protein was expressed at the mature schizont of P. vivax. The expression of PvCDPK4-EF in schizont suggests that it may participate in the proliferation or egress process in the life cycle of this parasite.

Physalin D inhibits RANKL-induced osteoclastogenesis and bone loss via regulating calcium signaling

  • Ding, Ning;Lu, Yanzhu;Cui, Hanmin;Ma, Qinyu;Qiu, Dongxia;Wei, Xueting;Dou, Ce;Cao, Ning
    • BMB Reports
    • /
    • 제53권3호
    • /
    • pp.154-159
    • /
    • 2020
  • We investigated the effects of physalin A, B, D, and F on osteoclastogenesis induced by receptor activator of nuclear factor κB ligand (RANKL). The biological functions of different physalins were first predicted using an in silico bioinformatic tool (BATMAN-TCM). Afterwards, we tested cell viability and cell apoptosis rate to analyze the cytotoxicity of different physalins. We analyzed the inhibitory effects of physalins on RANKL-induced osteoclastogenesis from mouse bone-marrow macrophages (BMMs) using a tartrate-resistant acid phosphatase (TRAP) stain. We found that physalin D has the best selectivity index (SI) among all analyzed physalins. We then confirmed the inhibitory effects of physalin D on osteoclast maturation and function by immunostaining of F-actin and a pit-formation assay. On the molecular level, physalin D attenuated RANKL-evoked intracellular calcium ([Ca(2+)](i)) oscillation by inhibiting phosphorylation of phospholipase Cγ2 (PLCγ2) and thus blocked the downstream activation of Ca2+/calmodulin-dependent protein kinases (CaMK)IV and cAMP-responsive element-binding protein (CREB). An animal study showed that physalin D treatment rescues bone microarchitecture, prevents bone loss, and restores bone strength in a model of rapid bone loss induced by soluble RANKL. Taken together, these results suggest that physalin D inhibits RANKL-induced osteoclastogenesis and bone loss via suppressing the PLCγ2-CaMK-CREB pathway.