• 제목/요약/키워드: Calcium sulfate membrane

검색결과 24건 처리시간 0.025초

Porphyromonas endodontalis의 Lipopolysaccharide가 섬유아세포의 세포막 투과성에 미치는 영향 (EFFECTS OF Porphyromonas endodontalis LIPOPOLYSACCHARIDE ON MEMBRANE PERMEABILITY OF FIBROBLAST)

  • 김재희;김민겸;윤수한
    • Restorative Dentistry and Endodontics
    • /
    • 제24권3호
    • /
    • pp.437-446
    • /
    • 1999
  • Porphyromonas endodontalis(P. endodontalis) is one of the important causative bacteria of pulpal and periapical disease. P. endodontalis has lipopolysaccharide(LPS) and it plays a major role in stimulating the synthesis and release of cytokines from immune cells and prostaglandin $E_2$ from host cells. The purpose of this study is to prepare LPS from P. endodontalis and to evaluate the effect of LPS on membrane permeability of fibroblast. P. endodontalis ATCC 35406 was cultured in anaerobic condition, and LPS was extracted. LPS was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Human periodontal ligament cell, colon fibroblast(CCD-18Co, KCLB 21459) and skin fibroblast(Detroit 551, KCLB 10110) were perfused with 0.01% P. endodontalis LPS solution, high concentration of $K^+$ solution and $Ca^{2+}$-free solution, $Ca^{2+}$ concentration ratio was measured by microfluorometry. 1. Intracellular $Ca^{2+}$ concentration was not changed in human periodontal fibroblast and skin fibroblast(Detroit 551) stimulated by P. endodontalis LPS. 2. Intracellular $Ca^{2+}$ concentration was increased in colon fibroblast(CCD-18Co) stimulated by P. endodontalis LPS. 3. Colon fibroblast(CCD-18Co) has voltage dependent $Ca^{2+}$ channel activated by high concentration of $K^+$ solution. 4. P. endodontalis LPS has no effect on the increase of intracellular $Ca^{2+}$ concentration during perfusion of $Ca^{2+}$-free solution.

  • PDF

계면활성제를 첨가한 미셀 형성 세라믹 정밀여과에 의한 용존 철 이온 제거 (Removal of Aqueous Iron Ion by Micellar Enhanced Ceramic Microfiltration Adding Surfactant)

  • 박진용;유병권
    • Korean Chemical Engineering Research
    • /
    • 제47권2호
    • /
    • pp.190-194
    • /
    • 2009
  • 본 연구에서는 공업용수 중에 미량 함유될 수 있는 철 이온을 제거하기 위해 음이온 계면활성제 SDS를 주입하여 미셀을 형성한 후, 미셀과 철 이온이 결합된 응집체를 관형 세라믹 정밀여과막으로 배제하였다. 철 모사용액을 대상으로 SDS 농도가 철과 SDS 제거율에 미치는 영향을 알아본 결과, 철의 제거율은 SDS의 임계미셀농도(CMC)인 8.00 mM에서 가장 높은 92.26%를 나타내었고, SDS 제거율은 칼슘 이온 제거 결과보다 다소 높은 61.10%를 보였다. SDS의 농도가 증가함에 따라 최종 막오염에 의한 저항 $R_f$가 증가하여 4 mM일 때 가장 높은 값을 보이다가 10 mM에서 가장 낮은 값을 나타내었다. SDS 10 mM인 조건에서 최종 투과선속 $J_{180}$가 가장 큰 값을 나타냈었고, 결국 가장 높은 총여과부피를 얻을 수 있었다. CMC 8 mM의 경우 운전시간 80분까지는 10 mM과 동일하게 낮은 $R_f$ 값을 보이다가, 120분까지 급격하게 증가하다가 다시 180분까지 서서히 증가하는 경향을 보였다.

Genes Associated with Individual Variation of Electroacupuncture Anti-allodynic Effects in Rat

  • Hwang, Byung-Gil;Kim, Sun-Kwang;Han, Jae-Bok;Bae, Hyun-Su;Min, Byung-Il
    • 동의생리병리학회지
    • /
    • 제21권5호
    • /
    • pp.1285-1290
    • /
    • 2007
  • The present study aims to identify and characterize genes that cause differen genes between non-responders and responders to electroacupuncture (EA) on mechanical allodynia following peripheral nerve injury. Under sodium pentobarbital anesthesia, animals were subjected to unilateral transection of the superior caudal trunk at the level between S1 and S2 spinal nerves. EA stimulation (2Hz, 0.3 ms, 0.2-0.3 mA) was delivered to Zusanli (ST36) for 30 min 2 weeks after the surgery. The degree of mechanical allodynia was assessed quantitatively by touching the tail with von Frey hair (2.0 g) at 10 min intervals. The rats, which showed an EA-induced decrease of response frequencies under 10 %, were classified as non-responders and those displaying an EA-induced decrease of response frequencies 20 % or more were classified as responders. Results from oligonucleotide microarray, to which cDNAs from the spinal dorsal horn (DH) were applied, showed that hemoglobin beta chain complex and chondroitin sulfate proteoglycan-5 decreased and limbic system-associated membrane protein increased in the non-responder group, whereas calcium-independent alpha-Iatrotoxin receptor homolog-3 increased in the responder group. These results suggest that The functional abnormality of molecules regulating cell adhesion, intracellular signal transduction and cell differentiation in the spinal DH may be involved in the anti-allodynic effect of EA.

이온선택성 멤브레인을 이용한 양액 내 질산태 질소 및 칼륨 측정 (Sensing NO3-N and K Ions in Hydroponic Solution Using Ion-Selective Membranes)

  • 김원경;박두산;김영주;노미영;조성인;김학진
    • Journal of Biosystems Engineering
    • /
    • 제35권5호
    • /
    • pp.343-349
    • /
    • 2010
  • Rapid on-site sensing of nitrate-nitrogen and potassium ions in hydroponic solution would increase the efficiency of nutrient use for greenhouse crops cultivated in closed hydroponic systems while reducing the potential for environmental pollution in water and soil. Ion-selective electrodes (ISEs) are a promising approach because of their small size, rapid response, and the ability to directly measure the analyte. The capabilities of the ISEs for sensing nitrate and potassium in hydroponic solution can be affected by the presence of other ions such as calcium, magnesium, sulfate, sodium, and chloride in the solution itself. This study was conducted to investigate the applicability of two ISEs consisting of TDDA-NPOE and valinomycin-DOS PVC membranes for quantitative determinations of $NO_3$-N and K in hydroponic solution. Nine hydroponic solutions were prepared by diluting highly concentrated paprika hydroponic solution to provide a concentration range of 3 to 400 mg/L for $NO_3$-N and K. Two of the calibration curves relating membrane response and nutrient concentration provided coefficients of determination ($R^2$) > 0.98 and standard errors of calibration (SEC) of < 3.79 mV. The use of the direct potentiometry method, in conjunction with an one-point EMF compensation technique, was feasible for measuring $NO_3$-N and K in paprika hydroponic solution due to almost 1:1 relationships and high coefficients of determination ($R^2$ > 0.97) between the levels of $NO_3$-N and K obtained with the ion-selective electrodes and standard instruments. However, even though there were strong linear relationships ($R^2$ > 0.94) between the $NO_3$-N and K concentrations determined by the Gran's plot-based multiple standard addition method and by standard instruments, hydroponic $NO_3$-N concentrations measured with the ISEs, on average, were about 10% higher than those obtained with the automated analyzer whereas the K ISE predicted about 59% lower K than did the ICP spectrometer, probably due to no compensation for a difference between actual and expected concentrations of standard solutions directly prepared.