• Title/Summary/Keyword: Calcium oxide (CaO)

Search Result 109, Processing Time 0.024 seconds

Characteristics of ZnO Varistors with Praseodymium Oxide

  • Lee, Sang-Ki;Cho, Sung-Gurl;Shim, Young-Jae
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.357-362
    • /
    • 1999
  • ZnO varistors containing cobalt, praseodymium and calcium oxides were prepared. The current-voltage charcteristics and microstructures of the specimens were investigated with respect to calcium addition and sintering temperature. The potential barrier heights and the carrier densities were estimated from C-V relations. The compatibility of Ag-Pd as an internal electrode for multilayer chip varistor was also examined.

  • PDF

Kinetic study of high-temperature removal of $H_2S$ by Ca-based sorbents (황화수소 제거를 위한 칼슘계 고온탈황제의 황화반응속도에 관한 연구)

  • 김영식;전지환
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 1998.04a
    • /
    • pp.144-153
    • /
    • 1998
  • Sorbents of calcined limestone and oyster particles having a diameter of about 0.63mm were exposed to simulate fuel gases containing 5000ppmv H2S for temperatures ranging from 600 to 800C in a TGA. The reaction between CaO and H2S proceds via an unreacted shrinking core mechanism. The sulfidation rate is likely to be controlled primarily by countercurrent diffusion through the product layer of calcium sulfide(CaS) formed. The kinetics of the sorption of H2S by CaO is sensitive to the reaction temperature and particle size, and the reaction rate of oyster was faster than the calcined limestone.

  • PDF

Kinetic of High-Temperature Removal of $H_2S$ by Ca-based Sorbents (황화수소 제거를 위한 칼슘계 고온 탈황제의 황화반응속도)

  • 김영식;전지환;손병현;정종현;정덕영;오광중
    • Journal of Environmental Science International
    • /
    • v.8 no.1
    • /
    • pp.125-133
    • /
    • 1999
  • Sorbents of calcined limestone and oyster particles having a diameter of about 0.63mm were exposed to simulated fuel gases containing 5000ppm $H_2S$ for temperatures ranging from 600 to 80$0^{\circ}C$ in a TGA (Thermalgravimetric analyzer). The reaction between CaO and $H_2S$ proceeds via an unreacted shrinking core mechanism. The sulfidation rate is likely to be controlled primarily by countercurrent diffusion through the product layer of calcium sulfide(CaS) formed. The kinetics of the sorption of $H_2S$ by CaO is sensitive to the reaction temperature and particle size, and the reaction rate of oyster was faster than the calcined limestone.

  • PDF

Additive Materials to Reduce the Amount of Loess Being Applied for Red Tide Removal on Coastal Water (적조방제용 황토살포의 양을 줄일 수 있는 첨가제에 대한 연구)

  • Park, Chi-Hyun;Lee, Byoung-Ho
    • Journal of Environmental Science International
    • /
    • v.16 no.6
    • /
    • pp.745-750
    • /
    • 2007
  • Large scale of loess has been applied on the south - sea shore of the Korean peninsula to treat red tides, due to many fishery's devastation by red tides every year. However, coastal ecosystem is ruined by the huge amount of loess applied every year. Almost all creatures, living under water such as sea weeds, clams, and fishes, where loess was applied, are disappearing. In this paper, alternative methods of the loess application are investigated. The amount of loess could be reduced by the alternative methods, Especially, loess mixed with calcium oxide has excellent effects to reduce Cochlodinium polykrikoides numbers. It was found that when loess is used with calcium oxide(CaO), removal efficiency of red tides is highly increased. Moreover, the amount of loess could be reduced dramatically.

Photocatalytic Oxidation of NOx onCaO/TiO2 (CaO/TiO2에서 NOx의 광촉매 산화반응에 대한 연구)

  • Shin Joong-Hyeok;Lim Woong-Mook;Jun Jin
    • Journal of Environmental Science International
    • /
    • v.15 no.6
    • /
    • pp.533-538
    • /
    • 2006
  • Removal of $NO_x$ on $CaO/TiO_2$ photocatalyst manufactured by the addition of $Ca(OH)_2$ was measured in relation with the amount of $Ca(OH)_2$ and calcination temperature. In case of pure $TiO_2$, the $NO_x$ removal decreased greatly with the increase of calcination temperature from $500^{\circ}C\;to\;700^{\circ}C$, whereas in the photocatalyst added with $Ca(OH)_2$, the removed amount of $NO_x$ was high and constant regardless of calcination temperature. Considering $NO_x$ removal patterns depending on the amount of $Ca(OH)_2$ added(50, 30, 10wt%), high removal rate showed at the photocatalysts containing less than 30wt% of $Ca(OH)_2$, and it was about 30% higher than that of pure $TiO_2$. From the XRD patterns, it is seen that the addition of $Ca(OH)_2$ contributes to maintaining the anatase structure that is favourable to photocatalysis. It also indicates that the possibility of the formation of calcium titanate($CaTiO_3$) by reacting with $TiO_2$ above $700^{\circ}C$. Apart from the favourable crystalline structure, the addition of $Ca(OH)_2$ helped increase the alkalinity of photocatalyst surface, thus promoting the photooxidation reaction of $NO_x$.

Development of Porous Sorbents for Removal of Hydrogen Sulfide from Hot Coal Gas -II. Kinetics of Suffidation on Zinc Oxide - (고온석탄가스에서 황화물을 제거하기 위한 다공성 흡착제의 개발 -II. 산화아연의 황화반응에 관한 연구-)

  • 서인식;이재복;류경옥
    • Journal of Environmental Health Sciences
    • /
    • v.14 no.1
    • /
    • pp.11-22
    • /
    • 1988
  • Calcium oxide, lithium oxide and titanium oxide were investigated as additives of zinc oxide for the removal of hydrogen sulfide at high temperature. This experiment was performed in the range of 1.0-2.0 vol.% H$_2$S concentration at 623-873 K reaction temperature, using a thermogravimetric analyzer. A pore blocking model was found to fit the reaction rate and the kinetics data were sucessfully expressed by this model. The reactions between additive sorbents and hydrogen sulfide were first order with respect to hydrogen sulfide concentration in a gaseous mixture with nitrogen. Among the used sorbents, ZnO-CaO 0.5 at.% and ZnO-TiO$_2$ 2.0 at.% sorbents had the best additive effects on the sulfidation reaction between additive sorbents and hydrogen sulfide, whereas the ZnO-Li$_2$O sorbents were ineffective.

  • PDF

Application of In-situ CaCO3 Formation Method for Better Utilization of Recycled Fibers (1) - Enhancing Attachment of CaCO3 to Fibers by Polymer Pre-Treatment - (고지의 효과적인 활용을 위한 in-situ 탄산칼슘 부착방식의 연구 (1) - 탄산칼슘의 부착 효과 증대를 위한 고분자 전처리 -)

  • Seo, Yung Bum;Lee, Min Woo;Lee, Young Ho;Jung, Jae Kwon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.5
    • /
    • pp.19-26
    • /
    • 2014
  • In-situ $CaCO_3$ formation on recycled wood pulp was studied to improve optical property and filler attachment to the fiber furnish in papermaking. We tried to attach calcium oxide (CaO) to the recycled fibers, old newspaper (ONP) in this case, by using selected polymers before in-situ $CaCO_3$ formation reaction on fibers, and then, $CO_2$ was injected to the furnish until all the CaO on fiber surfaces was consumed. It was found that the attachment of newly formed $CaCO_3$ to recycled fibers became stronger by attaching CaO to the fibers before in-situ $CaCO_3$ formation reaction. It was expected that the polymers used for the attachment of calcium source to the fiber furnishes helped to keep the newly formed $CaCO_3$ strongly attached to the fiber surface as well as to retain the impurities associated with calcium source and recycled fibers, if any. In-situ $CaCO_3$ formation gave higher brightness and much less ERIC value in ONP sheet than the case when the equivalent amount of GCC was added to the furnish.

Adsorption of Mercury(II) Chloride and Carbon Dioxide on Graphene/Calcium Oxide (0 0 1)

  • Mananghaya, Michael;Yu, Dennis;Santos, Gil Nonato;Rodulfo, Emmanuel
    • Korean Journal of Materials Research
    • /
    • v.26 no.6
    • /
    • pp.298-305
    • /
    • 2016
  • In this work, recent progress on graphene/metal oxide composites as advanced materials for $HgCl_2$ and $CO_2$ capture was investigated. Density Functional Theory calculations were used to understand the effects of temperature on the adsorption ability of $HgCl_2$ and water vapor on $CO_2$ adsorption on CaO (001) with reinforced carbon-based nanostructures using B3LYP functional. Understanding the mechanism by which mercury and $CO_2$ adsorb on graphene/CaO (g-CaO) is crucial to the design and fabrication of effective capture technologies. The results obtained from the optimized geometries and frequencies of the proposed cluster site structures predicted that with respect to molecular binding the system possesses unusually large $HgCl_2$ ($0.1-0.4HgCl_2g/g$ sorbent) and $CO_2$ ($0.2-0.6CO_2g/g$ sorbent) uptake capacities. The $HgCl_2$ and $CO_2$ were found to be stable on the surface as a result of the topology and a strong interaction with the g-CaO system; these results strongly suggest the potential of CaO-doped carbon materials for $HgCl_2$ and $CO_2$ capture applications, the functional gives reliable answers compared to available experimental data.

Hydration properties of OPC with Synthesized Calcium Alumino Ferrite(CAF) (합성 Calcium Alumino Ferrite(CAF) 치환량에 따른 시멘트 수화 특성)

  • Woong-Geol Lee;Myong-Shin Song
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.9-15
    • /
    • 2023
  • The cement is a typical CO2 emission industry. Manufacturing process improvements and increased use of alternative materials are needed to reduce energy consumption and CO2 emissions. This study confirmed the basic characteristics of cement hydration by sintering CAF at low temperature as a CO2 adsorbent material. For the hydration product of the synthetic CAF, crystal phase analysis, porosity, and structural images were confirmed, and the compressive strength was measured. The replacement rate of SCAF was 10, 20, and 100 %, and the compressive strength tended to decrease as the replacement rate increased. In addition, when the SCAF substitution rate is 100 %, the hydration products of the early age are calcium aluminum oxide hydrate (Ca3Al2O6 x H2O) and calcium iron hydroxide (Ca3Fe(OH)12), and at substitution rates of 10 and 20 %, CAF compounds other than general cement hydrates brownmillerite was observed. As for the porosity, the pore size increased and the porosity increased with the increase of the replacement ratio. As a result of this study, CAF manufactured by low-temperature sintering seems to be difficult to use alone and general curing for utilization as a CO2 adsorbing material.

Comparision of Ca- and Na- Based Dry Sorbent in Desulfurization Characteristics (Ca계 및 Na계 흡수제의 건식 탈황 특성 비교)

  • Moon, Seung-Hyun;Hyun, Ju-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.1
    • /
    • pp.21-28
    • /
    • 2009
  • Physico-chemical characteristics of the Ca-based and Na-based dry sorbents were compared using thermo-gravimetric analysis (TGA) and temperature programmed desorption (TPD) methods. The studied characteristics were thermal stability, sulfur dioxide ($SO_2$) absorption capacity and absorption rate at $250^{\circ}C$ which is a typical temperature before a fabric filter, and $SO_2$ absorption capacity at an ambient temperature. Calcium hydroxide ($Ca(OH)_2$) started to decompose into calcium oxide (CaO) at $390^{\circ}C$ and completed at 480~$500^{\circ}C$, showing 76% of an original $Ca(OH)_2$ weight. Sodium bicarbonate ($NaHCO_3$) also converted to sodium carbonate ($Na_2CO_3$) between $95^{\circ}C$ and $190^{\circ}C$, decreasing the weight to 63% of its initial weight. Among four sorbents tested at $250^{\circ}C$, sodium carbonate had the highest capacity, absorbing 0.35 g $SO_2$/g sorbent. Calcium oxide and calcium hydroxide followed that showing 0.156 g and 0.065 g $SO_2$ absorption per absorbent respectively. Ca-based absorbents showed slower rate than sodium carbonate because of initial stagnant step. However, calcium hydroxide caught more $SO_2$ than sodium carbonate at ambient temperature. From this work, it can be concluded that Ca-based absorbent is a proper sorbent for $SO_2$ treatment at low temperature and sodium carbonate, at high temperature.