• Title/Summary/Keyword: Calcium Hydroxide

Search Result 509, Processing Time 0.033 seconds

Treatment of Dyeing Wastewater by Flocculation with Calsium and Magnesium salts (칼슘과 마그네슘염을 이용한 염색폐수의 응집처리)

  • 김재용;서완주
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.3
    • /
    • pp.89-98
    • /
    • 2002
  • The changes of conventional clarification process and an increase in treatment cost are required to meet increasingly stringent regulations related to the treated water quality. Although many enhanced coagulations have introduced to improve organic matter removal, the results to remove color, nitrogen and phosphorus as well as organic material have not been very efficient yet. The removal of waste matters such as SS, organic matter, color and turbidity contained in dyeing wastewater was carried out by using the combination of calcium hydroxide and magnesium sulfate. The flocculation was investigated as a function of coagulant dose, pH, mixing time, settling time and coagulant addition modes such as the sequential addition of the two coagulants and the simultaneous addition of them. The flocculation by the combination of calcium hydroxide and magnesium sulfate was compared with that by aluminum sulfate. The mechanism of flocculation was investigated as well. About 84% of color in dyeing watewater was removed by flocculation with combination of calcium hydroxide and magnesium sulfate.

Characteristics and Improvement of Tap Water Corrosivity in Korea (국내 수돗물의 부식성 특성 및 개선방안)

  • Kim, Jin-Keun;Kim, Yeong-Kwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.731-739
    • /
    • 2011
  • To investigate corrosivity characteristics of tap water in Korea, Langelier index (LI) of 30 multi-regional water treatment plants (WTPs) were evaluated. Weekly LI values of 30 WTPs were all negative, which means tap water in Korea might be very corrosive. Maximum LI decrease through water treatment processes was 0.95 under no additional corrosion control process. Based on the correlation results between LI and tap water qualities, pH and calcium concentration were confirmed as major parameters for LI control. Addition of calcium hydroxide with $CO_{2}$ or calcium hydroxide or sodium hydroxide can be chosen based on water quality. Continuous monitoring of LI and related parameters is recommended in water distribution system.

EXPERIMENTAL STUDY ON THE EFFECT OF FORMOCRESOL TO THE PULP TISSUE (Formocresol이 치수조직(齒髓組織)에 미치는 영향(影響)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Park, Duk-Sang
    • Restorative Dentistry and Endodontics
    • /
    • v.6 no.1
    • /
    • pp.17-25
    • /
    • 1980
  • The purpose of this study was to evaluate the pulpal response against calcium hydroxide and zinc oxide containing various concentration of formocresol (0.1, 0.5, 1, 5, 10, 20 and 30%). The experiment was performed on dog's teeth (75 teeth from 5 dogs: Table 1.) and the teeth were routinly treated in laboratory procedures. Followings are the results obtained through microscopical examination. 1. In zinc oxide group, intlammatory reaction was severe in low concentrated formocresol and the (higher the concentration of formocresol the milder the inflammatory reaction was more evident. 2. In zinc oxide group, inflammatory change was milder at 3 weeks than 1 week, and proliferation of young connective tissue was seen at 3 weeks. 3. In calcium hydroxide group, inflammatory change in relation to the concentration of formocresol was not noticeable. 4. In calcium hydroxide group, repair process with decreased inflammatory reaction and fibrosis, and dentin bridge like layer was found at 3 weeks.

  • PDF

Prediction of Depth of Concrete Carbonation According to Microenvironmental Conditions (미세 환경조건에 따른 콘크리트 탄산화 깊이 예측)

  • Park, Dong-Cheon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.158-159
    • /
    • 2021
  • When the porous concrete is exposed to the external environment, the internal relative humidity changes from time to time due to the inflow and outflow of moisture. This change in moisture is affected by temperature. The temperature and humidity of concrete is dominant in the carbonation rate, the largest cause of deterioration of concrete. In this study, actual weather data were used as boundary conditions. A carbonization model of concrete temperature and humidity and calcium hydroxide was constructed to perform long-term analysis. There is a slight error in the carbonation formula of the Japanese Academy of Architecture applying the Kishtani coefficient, a representative experimental formula related to carbonization, and the analysis result values. However, considering that it behaves very similarly, it is thought that a fairly reliable numerical analysis model has been established. A slight error is believed to be due to the fact that the amount of residual calcium hydroxide in the carbonated site has not yet been clearly identified.

  • PDF

Calcium release and physical properties of modified carbonate apatite cement as pulp capping agent in dental application

  • Zakaria, Myrna Nurlatifah;Cahyanto, Arief;El-Ghannam, Ahmed
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.346-351
    • /
    • 2018
  • Background: Carbonate apatite ($CO_3Ap$) and silica-calcium phosphate composite (SCPC) are bone substitutes with good prospect for dental application. SCPC creates a hydroxyapatite surface layer and stimulate bone cell function while, $CO_3Ap$ induce apatite crystal formation with good adaptation providing good seal between cement and the bone. Together, these materials will add favorable properties as a pulp capping material to stimulate mineral barrier and maintain pulp vitality. The aim of this study is to investigate modification of $CO_3Ap$ cement combined with SCPC, later term as $CO_3Ap-SCPC$ cement (CAS) in means of its chemical (Calcium release) and physical properties (setting time, DTS and pH value). Methods: The study consist of three groups; group 1 (100% calcium hydroxide, group 2 $CO_3Ap$ (60% DCPA: 40% vaterite, and group 3 CAS (60% DCPA: 20% vaterite: 20% SCPC. Distilled water was employed as a solution for group 1, and $0.2mol/L\;Na_3PO_4$ used for group 2 and group 3. Samples were evaluated with respect to important properties for pulp capping application such as pH, setting time, mechanical strength and calcium release evaluation. Results: The fastest setting time was in $CO_3Ap$ cement group without SCPC, while the addition of 20% SCPC slightly increase the pH value but did not improved the cement mechanical strength, however, the mechanical strength of both $CO_3Ap$ groups were significantly higher than calcium hydroxide. All three groups released calcium ions and had alkaline pH. Highest pH level, as well as calcium released level, was in the control group. Conclusion: The CAS cement had good mechanical and acceptable chemical properties for pulp capping application compared to calcium hydroxide as a gold standard. However, improvements and in vivo studies are to be carried out with the further development of this material.

A study on the preparation of phosphatic calcium compounds using the shell resources (패각을 이용한 인산칼슘계 화합물의 제조에 관한 연구)

  • 이인곤;김판채
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.2
    • /
    • pp.171-176
    • /
    • 2000
  • The phosphatic calcium compounds such as calcium hydrogen phosphate, bone ash, hydroxyapatite and tricalcium phosphate were prepared using the high purity calcium hydroxide and calcium carbonate obtained from shell resources. Calcium hydrogen phosphate had been prepared using the high purity calcium hydroxide and phosphoric acid solution. Using the calcium hydrogen phosphate as a starting materials, bone ash have been prepared by solid state reaction method and hydroxyapatite could be obtained by hydrothermal treatment method, respectively. The tricalcium phosphate was prepared by the solid state reaction of a stoichiometic mixture of bone ash and high purity calcium carbonate. In this paper, the optimal preparation process and conditions of phosphatic calcium compounds were established.

  • PDF

Fundamental Research on Compressive Strength Recovery of Excessive High-volume Fly Ash Mortar (Fly Ash가 다량치환된 모르타르의 압축강도 회복에 관한 기초적 연구)

  • Choi, Yoon-Ho;Sin, Se-Jun;Han, Jun-Hui;Hyun, Seung-Yong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.199-200
    • /
    • 2019
  • The purpose of the research is assessing the possibility of strength recovery for mortar added with accidently high amount of fly ash. For compressive strength at 28 day, the sample painted with sodium hydroxide showed higher compressive strength than the sample painted with calcium hydroxide. Regarding the curing conditions, the curing temperature 65℃ provided better conditions than the curing temperature 20℃ in aspect of solution penetration depth and reactivity of fly ash. In the case of drying after saturation, the case painted with sodium hydroxid 65℃ showed the clearest engrossing mark.

  • PDF

ANTIMICROBIAL EFFECT OF ANTIBIOTICS AND ROOT CANAL CEMENTS ON THE PREDOMINANT PATHOGENIC ANAEROBIC MICROFLORA IN ROOT CANALS (근관내 주요 혐기성 병인균에 대한 수종 항생제와 근관충전용 세멘트의 항균효과에 관한 연구)

  • Bae, Kwang-Shik
    • Restorative Dentistry and Endodontics
    • /
    • v.18 no.2
    • /
    • pp.515-525
    • /
    • 1993
  • The purpose of this study was to evaluate the susceptibility of anaerobic microorganisms to certain antibiotics and root canal cements. Prevotella intermedia(Bacteroides intermedius) ATCC 25611(serotype A), Fusobacterium nucleatum ATCC 25586, Actinomyces viscosus ATCC 15987 which are the predominant pathogenic anaerobes in dental root canals were cultured in BHI for 48 hours(Fig.1). After each $200{\mu}l$ of those broths with microorganisms was streaked on each surface of blood agar plate, 2 to 5 antibiotic discs which are impregnated with Tetrncycline, Erythromycin, Ampicillin, Clindamycin, or Vancomycin were applied on each surface of blood agar plate and cultured for 5 days anaerobically in the anaerobic chamber (Fig.2). 15 antibiotic discs for each kind of antibiotics and each species of microorganisms were tested. Also each kind of root canal cement tubes which include Zinc oxide eugenol cement, Zinc phosphate cement, Calcium hydroxide powder+DD.W., Calcium hydroxide paste(Pulpdent Tempcanal), or Vitapex(Table 1) were applied on the inoculated BAPs after $200{\mu}l$ of each experimental species of microorganisms was streaked on the surface of blood agar plates, and they were cultured for 5 days anaerobically in the anaerobic chamber(Fig.3). The sensitivity(antimicrobial effect) was determined by the diameter of the inhibition zone. The results are as follows: 1. The results of antibiotic susceptibility test(Table 2) 1) All of the tested antibiotics had antimicrobial activity with various degrees. 2) In Prevotella intermedia (old Bacteroides intermedius), the diameter of inhibition zone to Erythromycin($37.87mm{\pm}2.20$) was largest, those to Tetracycline($26.20mm{\pm}2.96$), Vancomycin($21.53mm{\pm}1.96$), Clindamycin($18.73mm{\pm}0.96$) was smaller than former orderly, and That to Ampicillin ($7.87mm{\pm}0.83$) was smallest. 3) In Actinomyces viscosus, the diameter of inhibition zone to Erythromycin($28.73mm{\pm}1.22$) was largest, those to Ampicillin($21.73mm{\pm}1.03$), Clindamycin($21.33mm{\pm}1.59$) was similarly next order, that to Vancomycin($19.00mm{\pm}1.96$) was smaller than Clindamycin, and that to Tetracycline($11.93mm{\pm}0.70$) was smallest. 4) In Fusobacterium nucleatum, the diameter of inhibition zone to Ampicillin($31.07mm{\pm}1.91$) was largest, that to Erythromycin($28.87mm{\pm}0.92$), Clindamycin($20.47mm{\pm}1.51$), Vancomycin ($16.73mm{\pm}0.96$), Tetracycline ($12.13mm{\pm}1.06$) are smaller than former orderly. 2. The results of root canal cements and pastes(Table 3) 1) The external diameter of tube is 4mm, so 4mm of the inhibition zone diameter means non-susceptable. Prevotella intermedia (old Bacteroides intermedius) was non-susceptable to Calcium hydroxide powder+D.D.W., Calcium hydroxide paste(pulpdent Tempcanal), and Actinomyces viscosus was non-susceptable to Zinc phosphate cement, Calcium hydroxide powder + D.D.W., Calcium hydroxide paste(pulpdent Tempcanal). 2) In Prevotella intermedia (old Bacteroides intermedius), the diameter of inhibition zone to Zinc oxide eugenol cement($13.67mm{\pm}3.30$) was largest, that to Vitapex($9.20mm{\pm}2.96$), Zinc phosphate cement($6.13mm{\pm}2.07$) was smaller than former. 3) In Actinomyces viscosus, the diameter of inhibition zone to Zinc oxide eugenol cement($17.40mm{\pm}5.20$) was largest and that to Vitapex($8.80mm{\pm}1.70$) was next order. 4) In Fusobacterium nucleatum, the diameter of inhibition zone to Vitapex($42.33mm{\pm}17.2$) was largest and those to Calcium hydroxide paste(Pulpdent Tempcanal)($14.47mm{\pm}3.72$) and Zinc oxide eugenol cement($8.93mm{\pm}2.71$), Zinc phosphate cement($8.20mm{\pm}2.27$), Calcium hydroxide powder+D.D.W.($5.53mm{\pm}2.10$)was next orderly. And then In Zinc oxide eugenol cement and Zinc phosphate cement group, two of fifteen samples showed no inhibition zone, in Calcium hydroxide powder + D.D.W. group, 8 of 15 samples showed no inhibition zone.

  • PDF

PROPERTIES OF CALCIUM HYDROXIDE-EUGENOL COMPOUND (수산화칼슘-유지놀 화합물의 물성)

  • Park, Joon-Chol;Kwon, Tae-Kyung;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.2
    • /
    • pp.408-415
    • /
    • 1999
  • When a zinc-oxide eugenol type sealer was placed in root canals treated previously with calcium hydroxide, acceleration of its setting and the yellowish discoloration were observed clinically. The purpose of this study was to evaluate the properties of calcium hydroxide-eugenol compound. Some physical properties of calcium hydroxide-eugenol compound were compared with a manufactured zinc-oxide eugenol based root canal sealer, Tubli-seal$^{(R)}$ in terms of water solubility, water sorption, film thickness and microleakage. Solubility and water sorption were determined by the use of the method described in American Dental Association Specification(ADAS) no. 57. Ten samples of each material were prepared into disks 20mm in diameter and 1.5mm in thickness. The samples were immersed in 50ml of distilled water at $37{\pm}1^{\circ}C$ for 7 days. The samples were then removed and placed in a desiccator. The values for solubility and water sorption were calculated using differences between the weights of same sample. Film thickness was determined by the use of the method described in ADAS no. 57 too. A small quantity of mixed cement was placed between two glass plates of which thickness was measured previously. 15Kg loading was applied and total thickness of the glass plates and the cement film was measured. The thickness difference was recorded as the material's film thickness. Microleakage was determined with a dye penetration method. Experimental materials were placed between the dentin surface of bovine tooth and the acrylic rod. These units were immersed in Pelican ink (W-Germany) for three days. Dye-penetrated dentin surfaces of bovine tooth were measured using the NIB Image 1.60 Macintosh program. The results are as follows: 1. Water solubility value of calcium hydroxide-eugenol compound (20.98${\pm}$2.94%) was statistically higher than those of Tubli-seal$^{(R)}$(2.52${\pm}$0.49%)(p<0.05). 2. Water sorption value of calcium hydroxide-eugenol compound (59.72${\pm}$17.75%) was statistically higher than those of Tubli-seal$^{(R)}$(3.15${\pm}$0.76%)(p<0.05). 3. Film thickness value of calcium hydroxide-eugenol compound (0.36${\pm}$0.03mm) was statistically higher than those of Tubli-seal$^{(R)}$(0.12${\pm}$0.1mm)(p<0.05). 4. Dye penetration value after 3 days-immersion of calcium hydroxide-eugenol compound(57.63${\pm}$25.85%) was statistically higher than those of Tubli-seal$^{(R)}$(28.05${\pm}$23.46%)(p<0.05).

  • PDF

Solidification/Stabilization of Heavy Metals in Sewage Sludge Prior to Use as a Landfill Cover Material (매립지 복토재로의 활용을 위한 하수슬러지 내 중금속의 고형화/안정화)

  • Park, Youn-Jin;Shin, Won-Sik;Choi, Sang-June;Lee, Hoon-Ha
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.7
    • /
    • pp.665-675
    • /
    • 2010
  • The effects of chemical binders (ladle slag, ordinary portland cement (OPC), hydroxyapatite and calcium hydroxide) on the solidification/stabilization of heavy metals (Cd, Cu, Ni, Pb, Zn) in sewage sludge were evaluated by chemical leaching tests such as EDTA extraction, TCLP and sequential extraction. The results of EDTA extraction showed that heavy metal concentrations in sewage sludge were highly reduced after solidification/stabilization with slag, cement or calcium hydroxide. However, EDTA interrupted solidification/stabilization of heavy metals by hydroxyapatite. The TCLP-extracted heavy metal concentrations in sewage sludge after solidification/stabilization with chemical amendments were highly reduced. However, Cu concentration in the sewage sludge solidified/stabilized with slag, cement or calcium hydroxide increased because the pH of TCLP solution was higher than 7. Mixtures of sludge 1 : slag 0.2 : calcium hydroxide 0.1 (wt ratio) showed the least leachability in batch TCLP and EDTA extraction. The results of sequential extraction (SM&T, formaly BCR) indicated that the distribution of heavy metals changed from exchangable and carbonate fractions to strongly bound organic fraction. It was found that maximum leachate concentrations of Ba, Cd, Cr and Pb from sewage sludge amended with slag and calcium hydroxide were far below US EPA TCLP regulations.