Browse > Article
http://dx.doi.org/10.1186/s40824-018-0146-6

Calcium release and physical properties of modified carbonate apatite cement as pulp capping agent in dental application  

Zakaria, Myrna Nurlatifah (Department of Endodontology and Operative Dentistry, Program Study of Dentistry, Faculty of Medicine, Universitas Jenderal Achmad Yani)
Cahyanto, Arief (Department of Dental Materials Science and Technology, Faculty of Dentistry, Universitas Padjadjaran)
El-Ghannam, Ahmed (Department of Mechanical Engineering and Engineering Science, The University of North Carolina at Charlotte)
Publication Information
Biomaterials Research / v.22, no.4, 2018 , pp. 346-351 More about this Journal
Abstract
Background: Carbonate apatite ($CO_3Ap$) and silica-calcium phosphate composite (SCPC) are bone substitutes with good prospect for dental application. SCPC creates a hydroxyapatite surface layer and stimulate bone cell function while, $CO_3Ap$ induce apatite crystal formation with good adaptation providing good seal between cement and the bone. Together, these materials will add favorable properties as a pulp capping material to stimulate mineral barrier and maintain pulp vitality. The aim of this study is to investigate modification of $CO_3Ap$ cement combined with SCPC, later term as $CO_3Ap-SCPC$ cement (CAS) in means of its chemical (Calcium release) and physical properties (setting time, DTS and pH value). Methods: The study consist of three groups; group 1 (100% calcium hydroxide, group 2 $CO_3Ap$ (60% DCPA: 40% vaterite, and group 3 CAS (60% DCPA: 20% vaterite: 20% SCPC. Distilled water was employed as a solution for group 1, and $0.2mol/L\;Na_3PO_4$ used for group 2 and group 3. Samples were evaluated with respect to important properties for pulp capping application such as pH, setting time, mechanical strength and calcium release evaluation. Results: The fastest setting time was in $CO_3Ap$ cement group without SCPC, while the addition of 20% SCPC slightly increase the pH value but did not improved the cement mechanical strength, however, the mechanical strength of both $CO_3Ap$ groups were significantly higher than calcium hydroxide. All three groups released calcium ions and had alkaline pH. Highest pH level, as well as calcium released level, was in the control group. Conclusion: The CAS cement had good mechanical and acceptable chemical properties for pulp capping application compared to calcium hydroxide as a gold standard. However, improvements and in vivo studies are to be carried out with the further development of this material.
Keywords
Carbonate apatite; Silica-calcium phosphate composite; $CO_3Ap-SCPC$ cement; Pulp capping;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gandolfi MG, Siboni F, Botero T, Bossu M, Riccitiello F, Prati C. Calcium silicate and calcium hydroxide materials for pulp capping: biointeractivity, porosity, solubility and bioactivity of current formulations. J Appl Biomater Funct Mater. 2015;13(1):43-60.
2 Parolia A, Kundabala M, Rao NN, Acharya SR, Agrawal P, Mohan M, Thomas M. A comparative histological analysis of human pulp following direct pulp capping with Propolis, mineral trioxide aggregate and Dycal. Aust Dent J. 2010;55:59-64.   DOI
3 Zakaria MN, Cahyanto A, El-Ghannam A. Basic properties of novel bioactive cement based on silica-calcium phosphate composite and carbonate apatite. Key Eng Mater. 2017;720:147-52.
4 Zakaria MN, Pauziah NFN, Sabirin IP, Cahyanto A. Evaluation of carbonate apatite in inducing formation of reparative dentin in exposed dental pulp. Key Eng Mater. 2017;758:250-4.   DOI
5 Cahyanto A, Rezano A, Zakaria MN, El-Ghannam A. Synthesis and characterization of a novel $SCPC-CO_{3}AP$ cement for pulp capping application in dentistry. Key Eng Mater. 2017;758:29-33.   DOI
6 Maeda H, Maquet V, Chen QZ, Kasuga T, Jawad H, Boccaccini AR. Bioactive coatings by vaterite deposition on polymer substrates of different composition and morphology. Mat Sci Eng C. 2007;27:741-5.   DOI
7 Zakaria MN. Save the pulp is the essential issues on pulp capping treatment. J Dentomaxillofac Sci. 2016;1(2):301-5.
8 Poggio C, Lombardini M, Colombo M, Beltrami R, Rindi S. Solubility and pH of direct pulp capping materials: a comparative study. J Appl Biomater Funct Mater. 2015;13(2):181-5.
9 Liu L, Pushalkar S, Saxena D, LeGeros RZ, Zhang Y. Antibacterial property expressed by a novel calcium phosphate glass. J Biomed Mater Res B Appl Biomater. 2014;102(3):423-9.   DOI
10 Ishikawa K. Bone substitute fabrication based on dissolution-precipitation reactions. Materials. 2010;3:1138-55.   DOI
11 Cahyanto A, Maruta M, Tsuru K, Matsuya S, Ishikawa K. Fabrication of bone cement that fully transform to carbonate apatite. Dent Mat J. 2015;34(3):394-401.   DOI
12 Cahyanto A, Tsuru K, Ishikawa K. Carbonate apatite formation during the setting reaction of apatite cement. Advances in bioceramics and porous ceramics V. Ceram Eng Sci Proc. 2013;33(6):7-10.
13 Cahyanto A, Tsuru K, Ishikawa K. Transformation of apatite cement to B-type carbonate apatite using different atmosphere. Key Eng Mater. 2016;696:9-13.   DOI
14 Cahyanto A, Toita R, Tsuru K, Ishikawa K. Effect of particle size on carbonate apatite cement properties consisting of calcite (or vaterite) and dicalcium phosphate anhydrous. Key Eng Mater. 2014;631:128-33.   DOI
15 Al-Sabbagh M, Burt J, Barakat A, Kutkut A, El-Ghannam A. Alveolar ridge preservation using resorbable bioactive ceramic composite: a histological study. J Int Acad Perio. 2013;15(3):91-8.
16 Aniket YA, Marriott I, El-Ghannam A. Promotion of pro-osteogenic responses by a bioactive ceramic coating. J Biomed Mater Res A. 2012;100A:3314-25.   DOI
17 El-Ghannam A, Hart A, White D, Cunningham L. Mechanical properties and cytotoxicity of a resorbable bioactive implant prepared by rapid prototyping technique. J Biomed Mater Res Part A. 2013;101A:2851-61.
18 Leewenburgh S, Layrolle P, Barrere F, de Bruijn J, Schoonman J, van Blitterswijk CA, de Groot K. Osteoclastic resorption of biomimetic calcium phosphate coatings in vitro. J Biomed Mater Res. 2001;56:208-15.   DOI
19 Ishikawa K, Matsuya S. Bioceramics. In: Milne I, Ritchie RO, Karihaloo B, editors. Comprehensive structural integrity, vol. 9. Oxford: Elsevier; 2003. p. 169-214.
20 Cahyanto A, Maruta M, Tsuru K, Matsuya S, Ishikawa K. Basic properties of carbonate apatite cement consisting of vaterite and dicalcium phosphate anhydrous. Key Eng Mater. 2013;529-530:192-6.
21 Maeno S, Niki Y, Matsumoto H, Morioka H, Yatabe T, Funayama A, Toyama Y, Taguchi T, Tanaka J. The effect of calcium ion con- centration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials. 2005;26:4847-55.   DOI
22 Gupta G, Kirakodu S, El-Ghannam A. Effect of exogenous phosphorus and silicon on osteoblast differentiation at the interface with bioactive ceramics. J Biomed Mater Res A. 2010;95A:882-90.   DOI
23 Gupta G, El-Ghannam A, Kirakodu S, Khraisheh M, Zbib H. Enhancement of osteoblast gene expression by mechanically compatible porous Si-rich nanocomposite. J Biomed Mater Res B Appl Biomater. 2007;81:387-96.
24 Boskey AL, Roy R. Cell culture systems for studies of bone and tooth mineralization. Chem Rev. 2008;108(11):4716-33.   DOI
25 Fouad AF, Levin L. Pulpal Reactions to Caries and Dental Procedures. In: Hargreaves KM, Cohen S, editors. Cohen's Pathways of The Pulp. 11th ed. Missouri: Mosby Elsevier; 2015. p. 504.
26 Cox CF, Subay RK, Ostro E, Suzuki SH. Tunnel defects in dentin bridges their formation following direct pulp capping. Oper Dent. 1996;21:4-11.
27 Goldberg M, Smith AJ. Cells and extracellular matrices of dentin and pulp: a biological basis for repair and tissue engineering. Crit Rev Oral Biol Med. 2004;15(1):13-27.   DOI
28 Estrela C, Holland R. Calcium hydroxide: study based on scientific evidences. J Appl Oral Sci. 2003;11(4):269-82.   DOI
29 Hilton TJ. Key to success with pulp capping: a review of the literature. Oper Dent. 2009;34(5):615-25.   DOI
30 Dhillon H, Kaushik M, Sharma R. Regenerative endodontics-creating new horizons. J Biomed Mater Res Part B. 2016;104B:676-85.