• Title/Summary/Keyword: Calcite mineral

Search Result 248, Processing Time 0.023 seconds

Occurrence and Chemical Composition of Minerals from the Pallancata Ag Mine, Peru (페루 Pallancata 은 광산에서 산출되는 광물들의 산상 및 화학조성)

  • Yoo, Bong Chul;Acosta, Jorge
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.87-102
    • /
    • 2019
  • Pallancata Ag mine is located at the Ayacucho region 520 km southeast of Lima. The geology of mine area consists of mainly Cenozoic volcanic-intrusive rocks, which are composed of tuff, andesitic lava, andesitic tuff, pyroclastic flow, volcano clasts, rhyolite and quartz monzonite. This mine have about 100 quartz veins in tuff filling regional faults orienting NW, NE and EW directions. The Ag grades in quartz veins are from 40 to 1,000 g/t. Quartz veins vary from 0.1 m to 25 m in thickness and extend to about 3,000 m in strike length. Quartz veins show following textures including zonation, cavity, massive, breccia, crustiform, colloform and comb textures. Wallrock alteration features including silicification, sericitization, pyritization, chloritization and argillitization are obvious. The quartz veins contain calcite, chalcedony, adularia, fluorite, rutile, zircon, apatite, Fe oxide, REE mineral, Cr oxide, Al-Si-O mineral, pyrite, sphalerite, chalcopyrite, galena, electrum, proustite-pyrargyrite, pearceite-polybasite and acanthite. The temperature and sulfur fugacity ($f_{s2}$) of the Ag mineralization estimated from the mineral assemblages and mineral compositions are ranging from 118 to $222^{\circ}C$ and from $10^{-20.8}$ to $10^{-13.2}atm$, respectively. The relatively low temperature and sulfur-oxygen fugacities in the hydrothermal fluids during the Ag mineralization in Pallancata might be due to cooling and/or boiling of Ag-bearing fluids by mixing of meteoric water in the relatively shallow hydrothermal environment. The hydrothermal condition may be corresponding to an intermediate sulfidation epithermal mineralization.

Clay Mineral Distribution in the Yellow Sea Surface Sediments: Absolute Mineral Composition and Relative Mineral Composition (황해 표층퇴적물의 점토광물 분포; 절대광물조성과 상대광물조성)

  • Moon, Dong-Hyeok;Yi, Hi-Il;Shin, Dong-Hyeok;Shin, Kyung-Hoon;Cho, Hyen-Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.289-295
    • /
    • 2008
  • We studied the difference between the clay mineral content in the bulk marine sediments (absolute clay mineral composition) and clay mineral content only in total clay minerals (relative clay mineral composition) of the Yellow Sea marine sediments, and correlated the relationship between their distribution patterns. We used 56 Yellow Sea Surface sediments collected at the second cruise in 2001 of KORDI, and determined the absolute mineral composition using the quantitative X-ray diffraction analysis. Yellow Sea surface sediments consist of primary rock forming minerals including quartz (average 44.7%), plagioclase (15.9%), alkali feldspar (10.0%), hornblende (2.8%) together with clay minerals (illite 15.3%, chlorite 2.6% and kaolinite 1%) and carbonates (calcite 1.7%, aragonite 0.6%). Absolute clay mineral contents are very high in the region extending from the southeast of Sandong Peninsula to the southwest of Jeju Island. In contrast, it is very low along the margin of the Yellow Sea. Such distribution patterns of absolute clay mineral content are very similar to those of fine-grained sediments in the study area. The average relative clay mineral composition of illite, chlorite, and kaolinite is respectively 80.3%, 14.9% and 4.8%. The distribution pattern of relative mineral composition shows very different phenomenon when compared with those of absolute mineral composition, and also do not exhibit any positive relationship with that of fine-grained sediments in which clay mineral composition is abundant. Therefore, we suggest that the relative clay mineral compositions and their distribution patterns must be used very carefully when interpreting the origin of sediment provenance.

Mineralogical Characteristics of Fracture-Filling Minerals from the Deep Borehole in the Yuseong Area for the Radioactive Waste Disposal Project (방사성폐기물처분연구를 위한 유성지역 화강암내 심부 시추공 단열충전광물의 광물학적 특성)

  • 김건영;고용권;배대석;김천수
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.99-114
    • /
    • 2004
  • Mineralogical characteristics of fracture-filling minerals from deep borehole in the Yuseong area were studied for the radioactive waste disposal project. There are many fracture zones in the deep drill holes of the Yuseong granite, which was locally affected by the hydrothermal alteration. According to the results of hole rock analysis of drill core samples, $SiO_2$ contents are distinctly decreased, whereas $Al_2$$O_3$ and CaO contents and L.O.I. values are increased in the -90 m∼-130 m and -230 m∼-250 m zone, which is related to the formations of filling minerals. Fracture-filling minerals mainly consist of zeolite minerals (laumontite and heulandite), calcite, illite ($2M_1$ and 1Md polytypes), chlorite, epidote and kaolinite. The relative frequency of occurrence among the fracture-filling minerals is calcite zeolite mineral > illite > epidote chlorite kaolinite. Judging from the SEM observation and EPMA analysis, there is no systematic change in the texture and chemical composition of the fracture-filling minerals with depth. In the study area, low temperature hydrothermal alteration was overlapped with water-rock interactions for a long geological time through the fracture zone developed in the granite body. Therefore the further study on the origin and paragenesis of the fracture-filling minerals are required.

Mineralogy and Geochmistry of the Sanjeon Au-Ag Deposit, Wonju Area, Korea (산전 금-은 광상에 관한 광물 및 지화학적 연구)

  • Se-Hyun Kim
    • Economic and Environmental Geology
    • /
    • v.32 no.5
    • /
    • pp.445-454
    • /
    • 1999
  • The Sanjeon Au-Ag deposit consists of three subparallel hydrothermal quartz-calcite veins which filled fault-related fractures (generally $N20^{\circ}$ to 35"W-trending and $70^{\circ}$ to $80^{\circ}$ SW-dipping) within quartz porphyry. The vein mineralization shows an apparent variation of mineral assemblages with paragenetic time: (1) early, white quartz + pyrite + arsenopyrite + brown sphalerite, (2) middle, white (vein) to clear quartz (vug) + base-metal sulfides + electrum + argentite, (3) late, calcite + pyrite + native silver. Mineralogic and fluid inclusion data indicate that gold-silver minerals were deposited at temperatures from 2l $0^{\circ}$ to $250^{\circ}$ with salinities of 4 to 5 wt. % equiv. NaCl and log fS2 values from -14.0 to -12.2 atm. The linear relationship between homogenization temperature and salinity data indicates that gold-silver deposition was a result of meteoric water mixing. Ore mineralization occurred at pressure conditions of about 70 bars, which corresponds to the mineralization depths of about 260 m to 700 m. There is a remarkable decrease of the calculated 1)180 values of water from 1.3 to -9.7%0 in hydrothermal fluid with increasing paragenetic time. This indicates a progressive increase of meteoric water influx in the hydrothermal system at the Sanjeon deposit. Oxygen-hydrogen, sulfur, and carbon isotope values of hydrothermal fluids indicate that the ore mineralization was formed largely from meteoric waters with the contribution of sulfur and carbon from a deep igneous source.

  • PDF

Plant Growth-Promoting Activity Characteristics of Bacillus Strains in the Rhizosphere (근권에 존재하는 Bacillus 속 균주들의 식물 생장 촉진 활성 특성)

  • Oh, Ka-Yoon;Kim, Ji-Youn;Lee, Song Min;Kim, Hee Sook;Lee, Kwang Hui;Lee, Sang-Hyeon;Jang, Jeong Su
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.403-412
    • /
    • 2021
  • This study aimed to identify plant growth-promoting activity, phytopathogenic fungi growth inhibitory activity, mineral solubilization ability, and extracellular enzyme activity of the genus Bacillus in soil and the rhizosphere. With regards to antifungal activity against phytopathogenic fungi, DDP257 showed antifungal activity against all 10 pathogenic fungi tested. ANG20 showed the highest ability to produce indole-3-acetic acid, a plant growth-promoting factor (70.97 ㎍/ml). In addition, 10 species were identified to have 1-aminocyclopropane-1-carboxylate deaminase production ability, and most isolates showed nitrogen fixation and siderophore production abilities. Thereafter, the isolated strains' ability to solubilize minerals such as phosphate, calcite, and zinc was identified. With extracellular enzyme activity, the activity appeared in most enzymes. In particular, all the strains showed similar abilities for alkaline phosphatase, esterase (C4), acid phosphatase, and naphtol-AS-BI-phosphohydrolase production. This result was observed because the genus Bacillus secreted various organic substances, antibiotics, and extracellular enzymes. Therefore, through the results of this study, we suggest the possibility of using strains contributing to the improvement of the soil environment as microbial agents.

Au-Ag-bearing Ore Mineralization at the Geochang Hydrothermal Vein Deposit (거창 열수 맥상광상의 함 금-은 광화작용)

  • Hong, Seok Jin;Lee, Sunjin;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.55 no.2
    • /
    • pp.171-181
    • /
    • 2022
  • The Geochang Au-Ag deposit is located within the Yeongnam Massif. Within the area a number of hydrothermal quartz and calcite veins were formed by narrow open-space filling of parallel and subparallel fractures in the granitic gneiss and/or gneissic granite. Mineral paragenesis can be divided into two stages (stage I, ore-bearing quartz vein; stage II, barren calcite vein) by major tectonic fracturing. Stage I, at which the precipitation of major ore minerals occurred, is further divided into three substages (early, middle and late) with paragenetic time based on minor fractures and discernible mineral assemblages: early, marked by deposition of pyrite with minor pyrrhotite and arsenopyrite; middle, characterized by introduction of electrum and base-metal sulfides with minor sulfosalts; late, marked by hematite with base-metal sulfides. Fluid inclusion data show that stage I ore mineralization was deposited between initial high temperatures (≥380℃ ) and later lower temperatures (≤210℃ ) from H2O-CO2-NaCl fluids with salinities between 7.0 to 0.7 equiv. wt. % NaCl of Geochang hydrothermal system. The relationship between salinity and homogenization temperature indicates a complex history of boiling, fluid unmixing (CO2 effervescence), cooling and dilution via influx of cooler, more dilute meteoric waters over the temperature range ≥380℃ to ≤210℃. Changes in stage I vein mineralogy reflect decreasing temperature and fugacity of sulfur by evolution of the Geochang hydrothermal system with increasing paragenetic time. The Geochang deposit may represents a mesothermal gold-silver deposit.

Mineralogical Properties of Asian Dust Sampled at Deokjeok Island, Incheon, Korea in February 22, 2015 (2015년 2월 22일 인천광역시 덕적도에서 포집된 황사의 광물학적 특성)

  • Park, Mi Yeon;Jeong, Gi Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.2
    • /
    • pp.79-87
    • /
    • 2016
  • Asian dust (Hwangsa) interacts with light, atmospheric gas, aerosol, and marine ecosystem, affecting Earth climate. Mineralogical properties are essential to understand the interaction between the dust and environments. In this study, we examined the mineralogical properties of Asian dust collected at Deokjeok Island, Incheon, Korea in February 22, 2015. X-ray diffraction (XRD) analyses showed that phyllosilicate minerals (62 wt%) dominate the Asian dust. Illite-smectite series clay minerals (55%) were common with minor chlorite (5%) and kaolinite (2%). Non-phyllosilicate minerals were quartz (18%), plagioclase (10%), K-feldspar (4%), calcite (4%), and gypsum (1%). Similar results were obtained by mineral quantification using scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS). Transmission electron microscopy combined with EDS confirmed illite-smectite series clay minerals as the dominant phyllosilicate type. Morphological analyses using SEM showed clay agglomerates, clay-coated quartz, feldspars, and micas. Gypsum grains were common on the particle surface, while calcite nanofibers, previously reported as common on the surface, were rare, indicating the reaction of calcite and acidic atmospheric pollutants to form gypsum. The analytical result of 2015 Asian dust would contribute to the establishment of mineralogical base for the modeling of the interaction between Asian dust and environments.

A Study on the Development of Self-Healing Smart Concrete Using Microbial Biomineralization (미생물의 생체광물형성작용을 이용한 자기치유 스마트 콘크리트 개발에 관한 기초연구)

  • Kim, Wha-Jung;Kim, Sung-Tae;Park, Sung-Jin;Ghim, Sa-Youl;Chun, Woo-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.501-511
    • /
    • 2009
  • This study was conducted to develop self-healing ability of concrete so that inspection could be available even in the event of minute cracks without complex works at any time for more economic concrete structure maintenance and longevity. A completely different method has been carried out in comparison with many of similar researches on self-healing concrete. This is a basic study on the development of self-healing concrete using microbial biomineralization. Compounds were generated except for cells by precipitation reaction of CaC$O_3$ during the microbial metabolism and we examined the use as a binder that hardens the surface of sand using biomineralization that Sporosarcina pasteurii precipitates CaC$O_3$. In result, the formation of new mineral and hardening of sand surface could be verified partly, and it was available for cracks to be repaired by calcite with organic (microorganism) and inorganic (CaC$O_3$) complex structure through the basic experiment a little bit. Therefore the use of biomineralization by this sort of microbial metabolism for concrete structure helps to develop absolute repair-concrete like this concrete with microorganism. The effect of microbial application will be one of the most important research tasks having influence on not only repair for concrete structure but also development of new materials able to reduce environmental problems.

A Study on Characteristics of Precipitated Calcium Carbonate Prepared by the Nozzle Spouting Method (분사법으로 제조된 침강성 탄산칼슘 특성에 관한 연구)

  • Park, Joo-Won;Kim, Joon-Seok;Ahn, Ji-Whan;Han, Choon
    • Applied Chemistry for Engineering
    • /
    • v.17 no.1
    • /
    • pp.67-72
    • /
    • 2006
  • Precipitated calcium carbonate (PCC) was prepared in a cylindrical reactor by the nozzle spouting method. The reactor was filled with $CO_2$ and $Ca(OH)_2$ suspensions were circulated through a nozzle to prepare PCC. This method has several advantages such as provision of large contact area between suspension and $CO_2$ and production of large number of nuclei in short time. By changing suspension concentrations, suspension temperature, flow rates of $CO_2$ and nozzle sizes, PCC from homogeneously dispersed $0.1{\mu}m$ to heterogeneous $0.3{\mu}m$ can be obtained. According to XRD analyses, most PCC formed was calcite with small amount of aragonite depending on the reaction conditions. Usually, the reaction proceeded at high pH and electric conductivities initially. Then, pH and electric conductivities decreased rapidly to the saturation condition. Results indicated that the specific conditions (temperature: $25^{\circ}C$, suspension concentration: 0.5 wt%, $CO_2$ flow rate: 1 L/min, nozzle size: 0.4 mm) were required to prepare uniform particle size (particle diameter: $0.1{\mu}m$) of PCC.

Formation and Crystallization of Calcium Carbonate in $C_2H_5OH-Ca(OH)_2-CO_2$ System by Ceramic Bubble Plate Reactor. (Ceramic Bubble Plate를 이용한 $C_2H_5OH-Ca(OH)_2-CO_2$계의 탄산칼슘 생성 및 결정화 연구)

  • Ahn, Ji-Whan;Park, Chan-Hoon
    • Resources Recycling
    • /
    • v.5 no.3
    • /
    • pp.56-64
    • /
    • 1996
  • C,H,OH system is widely used for producing synthetic beverages and pharmaceuticals. Calcium hydroxide suspension was used to callhol the morphology of calcium carbonate, and the charactenstics of the formahan and crystsllizatian of calcium cilrbonate by adding ethylenc glycol were determined A reaclor was made with attaching a ceramic bubble plate, and lhe eleclrical conductivity was continously monitored during the rcaction with CO, gas. A part of the suspension was separated and powdered at the transition point. XRD and electron microscopic observation showed that the intermedmte and final products were vilterite, ;~r;lganite and calcite. In this study, the volumc of the ethylene glycol added to CH,OH was fixed a1 10 vol\ulcornerh. The valumc of the suspension was 500 ml, and the changes oi characteristics were shdied along with variims cnntents(l0-50 g) of calcium hydroxide. Except m the case of 10 g of calcium hydroxide at the crystallization stagc, all of products showed gelation. Tne marc the calcium hydroxide the shorter the formation time. Alsa. the farmalion of spherical valcrile ivas obsemcd when 30 g Ca(OH), was added. Tne vaterite(a compound material) can bc synthesised under alnbienl pressure and lempcmhre m a C,H,OH system by morphology control. Even though the vateritc was meta-stable phasc and could bc changed to calcitc easily, the stable and spherical vateritc was observed by using G5 glass fillers and vacuum dricrs.

  • PDF