• Title/Summary/Keyword: Calcination Temperature

Search Result 548, Processing Time 0.025 seconds

Mineralogical Changes of Oyster Shells by Calcination: A Comparative Study with Limestone (소성에 따른 굴패각의 광물학적 특성변화: 석회석과의 비교 연구)

  • Lee, Jin Won;Choi, Seung-Hyun;Kim, Seok-Hwi;Cha, Wang Seog;Kim, Kangjoo;Moon, Bo-Kyung
    • Economic and Environmental Geology
    • /
    • v.51 no.6
    • /
    • pp.485-492
    • /
    • 2018
  • About 300 thousand tones of oyster shells are produced annually and, thus, their massive recycling methods are required. Recently, a method, utilizing them as wet desulfurization materials after removal of organic matters and changing $CaCO_3$ phase into CaO through calcination, is under consideration. This study investigates the mineralogical changes (specific surface area, phase changes, surface state, etc.) of oyster shells by calcination and their characteristics were compared with those of limestone. Uncalcined oyster shells showed the higher specific surface area than limestone because the former are composed of platy and columnar structures. In contrast, investigated limestone showed a dense structure. The phase change of oyster shells occurred at lower temperature than that of limestone. The specific surface area of oyster shell decreased significantly after calcination while limestone depicted a drastic increase. Small amount of Na contained in oyster shell was suggested as the cause of this phenomenon; in that, it acted as a flux causing melting and sintering of oyster materials at lower temperature. Because of this, an additional phenomenon was observed that a part of shell materials remained untransformed even at higher calcination temperature and after longer treatment period due to the sintered surface, which covers the rest parts. Further studies investigating the effect of this phenomena from the perspective of desulfurization is required.

Characterization and Adsorption Properties of Red Mud/Fly Ash Based Geopolymers Adsorbent with Calcination Temperature (Red mud/fly ash 기반 geopolymer 흡착제의 소성온도에 따른 특성 및 흡착거동)

  • Jin-Yeong Shin;Han-Seong Kim;Hwa-Yeong Kang;Soon-Do Yoon
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.412-420
    • /
    • 2023
  • In this study, red mud/fly ash based geopolymer adsorbents (RFGPA) were prepared with calcination temperatures of 200, 400, and 600 ℃, and the effects of these calcination temperatures on the adsorption of methylene blue (MB) were investigated. In addition, the prepared RFGPA was characterized using X-ray fluorescence (XRF), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR) spectroscopy, and Brunauer-EmmettTeller (BET) analysis. The results of the adsorption kinetics of MB at RFGPA prepared calcination temperatures indicated that the adsorption equilibrium of MB was reached after about 72 h. From the results of the adsorption isotherm, we verified that the degree of adsorption increased with increasing MB concentrations. In addition, the adsorption amount (Q) of MB decreased with an increase in calcination temperature. The experimental adsorption isotherm data were well fitted to the Freundlich and Sips equations compared to the Langmuir equation. In order to verify the effects of photocatalytic decomposition (C/C0) of MB on Fe2O3 present in prepared RFGPA, the degree of decomposition of MB was examined under dark and visible conditions. Results indicated that the decomposition of MB in visible conditions was about 3.0 times faster than that in dark conditions.

Compressive Strength of Cement mortar Admixed with Waste Phosphogypsum Calcination with various Temperature (하소 온도가 다른 페인산석고를 혼입한 시멘트 모르타르의 압축강도 특성)

  • An Yang Jin;Yoon Seong Jin;Mun Kyoung Ju;Soh Yang Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.228-231
    • /
    • 2004
  • The purpose of this study evaluates possibilities of waste phosphogypsum into concrete by steam curing admixture. The waste phosphogypsums were classified into 4 forms(Dihydrate, $\beta-Hemihydrate$, III-Anhydrite and II-Anhydrite) which were changed to in low temperature of calcination. Also, various admixtures were made of waste phosphogypsum(PG) and pozollanic fine powderers (Fly-ash, Blast Furnace Slag), and the basic properties of the cement mortars incorporating with these admixtures were examined and analyzed under a verity of experimental conditions. As a result, III-Anhydrite, these is similar to II-Anhydrite from compressive strength and are great in the effect of strength improvement. also, it was proved that specimens made on type III-Anhydrite of waste phosphogypsum and blast furnace slag increased on the compressive strength of cement mortar. Therefore, III-Anhydrite phosphogypsum calcined at lower temperature could be used as steam curing admixture for concrete 2th production.

  • PDF

Effect of Calcination Temperature on Electromagnetic Wave Absorption Properties of M-type Ferrite Composite (하소온도가 M형 페라이트 복합재의 전자파 흡수 특성에 미치는 영향)

  • Seong Jun Cheon;Jae Ryung Choi;Sang Bok Lee;Je In Lee;Horim Lee
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.289-296
    • /
    • 2023
  • In this study, we investigated the electromagnetic properties and microwave absorption characteristics of M-type hexagonal ferrites, which are known as millimeter-wave absorbing materials, according to their calcination temperature. The M-type ferrites synthesized using a molten salt-based sol-gel method exhibited a single-phase M-type crystal structure at calcination temperatures above 850℃. The synthesized particle size increased as well with the calcination temperature. Saturation magnetization increased gradually with increasing calcination temperature, but coercivity reached a maximum at 1050℃ and then rapidly decreased. After preparing a thermoplastic polyurethane (TPU) composite containing 70 wt% of M-type ferrites, we measured the complex permittivity and permeability in the Q-band (33-50 GHz) and V-band (50-75 GHz) frequency ranges, where ferromagnetic resonance occurred. Strong magnetic loss from ferromagnetic resonance occurred in the 50 GHz band for all composite samples. Based on the measured results, we calculated the reflection loss of the TPU/M-type ferrite composite. By calculating the reflection loss of the M-type ferrite composite, the M-type ferrite calcined at 1250℃ showed excellent electromagnetic wave absorption performance of more than -20 dB at 52 GHz with a thickness of about 0.5 mm.

Structural Changes During the Calcination of Raw Coke (Raw Coke의 하소온도에 따른 구조변화)

  • 염희남;장진석;이종민;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.10
    • /
    • pp.773-778
    • /
    • 1992
  • The effect of temperature on the structural changes of petroleum raw coke during calcination was studied and then the properties of carbon solids prepared from those calcined coke using binder were examined. The notable structural change of raw coke was observed in the range from 800$^{\circ}C$ to 900$^{\circ}C$ from the results of volatile matter, porosity, X-ray diffraction and scanning electron microscopy. The bending strength, density of the carbon solid carbonized at 1400$^{\circ}C$ was 400 kg/$\textrm{cm}^2$ and 1.40g/㎤, respectively.

  • PDF

Effect of Calcination Temperature on the Microstructure and Photocatalytic Activity of Electrospun BiVO4 Nanofiber (전기방사를 이용하여 합성한 BiVO4 나노섬유의 미세구조와 광촉매 특성에 하소 온도가 미치는 영향)

  • Ji, Myeongjun;Kim, Jeong Hyun;Ryu, Cheol-Hui;Ko, Yun Taek;Lee, Young-In
    • Journal of Powder Materials
    • /
    • v.27 no.3
    • /
    • pp.226-232
    • /
    • 2020
  • Bismuth vanadate (BiVO4) is considered a potentially attractive candidate for the visible-light-driven photodegradation of organic pollutants. In an effort to enhance their photocatalytic activities, BiVO4 nanofibers with controlled microstructures, grain sizes, and crystallinities are successfully prepared by electrospinning followed by a precisely controlled heat treatment. The structural features, morphologies, and photo-absorption performances of the asprepared samples are systematically investigated and can be readily controlled by varying the calcination temperature. From the physicochemical analysis results of the synthesized nanofiber, it is found that the nanofiber calcines at a lower temperature, shows a smaller crystallite size, and lower crystallinity. The photocatalytic degradation of rhodamine-B (RhB) reveals that the photocatalytic activity of the BiVO4 nanofibers can be improved by a thermal treatment at a relatively low temperature because of the optimization of the conflicting characteristics, crystallinity, crystallite size, and microstructure. The photocatalytic activity of the nanofiber calcined at 350℃ for the degradation of RhB under visible-light irradiation exhibits a greater photocatalytic activity than the nanofibers synthesized at 400℃ and 450℃.

The Isothermal Phase Transformation by Low Temperature Aging in Y-TZP Powders (저온 열처리에 의한 Y-TZP 분말의 등온 상전이)

  • Lee, Jong-Kook;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.8
    • /
    • pp.971-978
    • /
    • 1990
  • The ifluence of transformability and stabilized effects in tetragonal phase on the isothermal phase transformation of Y-TZP at low temperature were investigated. The transformability of Y-TZP powders were gradually increased with calcination temeprature and reached maximum at critical temperature, but when the Y-TZP powders were calcined above critical temperature, transformability of Y-TZP were gradually decreased with increasing calcination temperature. It was concluded that maximum transformability was appeared because particle size effects decreased and constrain effects increased with calcined temperature. The isothermal phase transformation during aging at 25$0^{\circ}C$ only observed in Y-TZP stabilized by constrain effects and the amounts of transformation during aging at 25$0^{\circ}C$ only observed in Y-TZP stabilized by constrain effects and the amount of transformed monoclinic phase during aging decreased with increasing constrain effects. From these results, the mechanism of isothermal phase transformation and degradation behaviors at low temperature in Y-TZP was concluded that occurred by decreasing of constrain effects due to stress relaxation at grian boundary.

  • PDF

Electrospun Tin Oxide Nanofibers with a Controlled Diameter and Morphology (전기방사된 주석산화물 나노섬유의 공정 변수에 따른 직경 및 형상 제어 연구)

  • Jang, Dae-Hwan;Lee, Jae-Eun;Choa, Yong-Ho;Lee, Young-In
    • Korean Journal of Materials Research
    • /
    • v.24 no.12
    • /
    • pp.663-670
    • /
    • 2014
  • Diameter-controlled tin oxide nanofibers have been successfully prepared using electrospinning and a subsequent calcination process; their diameters, morphologies, and crystal structures have been characterized. The diameters of the as-spun nanofibers can be decreased by lowering the concentration of a polymer and a tin precursor in the electrospinning solution because of the decrease in the solution viscosity. The crystal structure of the nanofibers calcined at various temperatures from $200^{\circ}C$ to $800^{\circ}C$ has been proved to be the tetragonal rutile of tin oxide; crystallinity is improved by increasing the temperature. However, nanofibers with lower concentrations of tin precursor do not maintain their fibrous structures after calcination at high temperatures. In this study, the effect of the relationship between the precursor concentration and the calcination temperature on the diameter and the morphology of the tin oxide nanofiber has been systematically investigated and discussed.

Effect of Solution Properties on Luminance Characteristics of YAG:Ce Phosphors Prepared by Spray Pyrolysis (분무열분해법으로 YAG:Ce 제조시 용액 조건이 발광특성에 미치는 영향)

  • Lee, You-Mi;Kang, Tae-Won;Jung, Kyeong-Youl
    • Journal of Powder Materials
    • /
    • v.19 no.3
    • /
    • pp.220-225
    • /
    • 2012
  • YAG:Ce yellow phosphor particles were synthesized by spray pyrolysis with changing the solution properties and their luminous properties, crystal structure, and morphological changes were studied by using PL measurement, XRD, and SEM analysis. It was clear that the solution properties significantly affected the crystal phase, crystallite size, the PL intensity, and the morphology of YAG:Ce particles. At low calcination temperature, the addition of urea only to the spray solution was helpful to form a pure YAG phase without any impurity phases, as the result, the highest luminescence intensity was achieved at the calcination temperature of $900^{\circ}C$. When the calcination temperatures were larger than $1300^{\circ}C$, however, the YAG particles prepared without any additive showed the highest luminescent intensity. Regardless of the solution conditions, the emission intensity of YAG:Ce particles prepared by spray pyrolysis showed a linear relation with the crystallite size. In terms of the morphology of YAG:Ce particles, the addition of both DCCA and $NH_4OH$ to the spray solution was effective to prepare a spherical and dense structured YAG particles.

Slow-Cooling Calcination Process to Potassium Tetratitanate and Potassium Hexatitanate Fibers (서냉소성법에 의한 사티탄산칼륨 및 육티탄산칼륨 섬유의 합성)

  • 최진호;한양수;송승완
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.8
    • /
    • pp.664-670
    • /
    • 1993
  • Potassium tetratitanate (K2Ti4O9) and Potassium hexatitanate (K2Ti6O13) fibers have been prepared by the slow-cooling calcination process in a temperature range from 125$0^{\circ}C$ to 95$0^{\circ}C$ using the K2CO3 and TiO2 as the starting materials. Optimum fiber growth conditions have been also investigated by changing the physical parameters, such as calcination time and temperature, and cooling rate. Relatively long K2Ti4O9 fibers ( 1.2mm) have been grown with quite a high aspect ratio (c/a 500)when the starting material with a nominal composition of K2O and TiO2 with 1:4 was calcined at 115$0^{\circ}C$ for 4h, and then was slowly cooled to 95$0^{\circ}C$ with a rate of 2$0^{\circ}C$/h. In case of a K2O.6TiO2 composition, acicular shaped K2Ti6O13 fibers with 20~300${\mu}{\textrm}{m}$ long and low aspect ratio (c/a 10~15) have been formed irrespective of the coolign rate. The growth condition of fibers have been discussed based upon the phase diagram of K2O-TiOa2.

  • PDF