DOI QR코드

DOI QR Code

Electrospun Tin Oxide Nanofibers with a Controlled Diameter and Morphology

전기방사된 주석산화물 나노섬유의 공정 변수에 따른 직경 및 형상 제어 연구

  • Jang, Dae-Hwan (Advanced Materials & Processing Center, Institute for Advanced Engineering) ;
  • Lee, Jae-Eun (Department of Fusion Chemical Engineering, Hanyang University) ;
  • Choa, Yong-Ho (Department of Fusion Chemical Engineering, Hanyang University) ;
  • Lee, Young-In (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 장대환 (고등기술연구원 신소재공정센터) ;
  • 이재은 (한양대학교 융합화학공학과) ;
  • 좌용호 (한양대학교 융합화학공학과) ;
  • 이영인 (서울과학기술대학교 신소재공학과)
  • Received : 2014.11.13
  • Accepted : 2014.11.17
  • Published : 2014.12.27

Abstract

Diameter-controlled tin oxide nanofibers have been successfully prepared using electrospinning and a subsequent calcination process; their diameters, morphologies, and crystal structures have been characterized. The diameters of the as-spun nanofibers can be decreased by lowering the concentration of a polymer and a tin precursor in the electrospinning solution because of the decrease in the solution viscosity. The crystal structure of the nanofibers calcined at various temperatures from $200^{\circ}C$ to $800^{\circ}C$ has been proved to be the tetragonal rutile of tin oxide; crystallinity is improved by increasing the temperature. However, nanofibers with lower concentrations of tin precursor do not maintain their fibrous structures after calcination at high temperatures. In this study, the effect of the relationship between the precursor concentration and the calcination temperature on the diameter and the morphology of the tin oxide nanofiber has been systematically investigated and discussed.

Keywords

References

  1. X. W. Lou, Y. Wang, C. Yuan, J. Y. Lee and L. A. Archer, Adv. Mater., 18, 2325 (2006). https://doi.org/10.1002/adma.200600733
  2. A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer and M. Moskovits, Nano Lett., 5, 667 (2005). https://doi.org/10.1021/nl050082v
  3. J. Qian, P. Liu, Y. Xiao, Y. Jiang, Y. Cao, X. Ai and H. Yang, Adv. Mater. 21, 3663 (2009). https://doi.org/10.1002/adma.200900525
  4. E. R. Leite, I. T. Weber, E. Longo and J. A. Varela, 12, 965 (2000). https://doi.org/10.1002/1521-4095(200006)12:13<965::AID-ADMA965>3.0.CO;2-7
  5. H. Song, L. Zhang, C. He, Y. Qu, Y. Tian and Y. Lv, 21, 5972 (2011). https://doi.org/10.1039/c0jm04331a
  6. H. -C. Chiu and C. -S. Yeh, 111, 7256 (2007).
  7. Y. -J. Choi, I. -S. Hwang, J. -G. Park, K. J. Choi, J. -H. Park and J. -H. Lee, Nanotechnology, 19, 095508 (2008). https://doi.org/10.1088/0957-4484/19/9/095508
  8. B. Wang, L. F. Zhu, Y. H. Yang, N. S. Xu and G. W. Yang, J. Phys. Chem. C, 112, 6643 (2008). https://doi.org/10.1021/jp8003147
  9. V. V. Sysoev, J. Goschnick, T. Schneider, E. Strelcov and A. Kolmakov, Nano Lett., 7, 3182 (2007). https://doi.org/10.1021/nl071815+
  10. D. -J. Yang, I. Kamienchick, D. Y. Youn, A. Rothschild and I. -D. Kim, Adv. Func. Mater., 20, 4258 (2010). https://doi.org/10.1002/adfm.201001251
  11. Z. Wang, Z. Li, L. Liu, X. Xu, H. Zhang, W. Wang, W. Zheng and C. Wang, J. Am. Ceram. Soc., 93, 634 (2010). https://doi.org/10.1111/j.1551-2916.2009.03480.x