Browse > Article
http://dx.doi.org/10.3740/MRSK.2014.24.12.663

Electrospun Tin Oxide Nanofibers with a Controlled Diameter and Morphology  

Jang, Dae-Hwan (Advanced Materials & Processing Center, Institute for Advanced Engineering)
Lee, Jae-Eun (Department of Fusion Chemical Engineering, Hanyang University)
Choa, Yong-Ho (Department of Fusion Chemical Engineering, Hanyang University)
Lee, Young-In (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.24, no.12, 2014 , pp. 663-670 More about this Journal
Abstract
Diameter-controlled tin oxide nanofibers have been successfully prepared using electrospinning and a subsequent calcination process; their diameters, morphologies, and crystal structures have been characterized. The diameters of the as-spun nanofibers can be decreased by lowering the concentration of a polymer and a tin precursor in the electrospinning solution because of the decrease in the solution viscosity. The crystal structure of the nanofibers calcined at various temperatures from $200^{\circ}C$ to $800^{\circ}C$ has been proved to be the tetragonal rutile of tin oxide; crystallinity is improved by increasing the temperature. However, nanofibers with lower concentrations of tin precursor do not maintain their fibrous structures after calcination at high temperatures. In this study, the effect of the relationship between the precursor concentration and the calcination temperature on the diameter and the morphology of the tin oxide nanofiber has been systematically investigated and discussed.
Keywords
tin oxide; nanofiber; diameter; electrospinning; gas sensor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 X. W. Lou, Y. Wang, C. Yuan, J. Y. Lee and L. A. Archer, Adv. Mater., 18, 2325 (2006).   DOI   ScienceOn
2 A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer and M. Moskovits, Nano Lett., 5, 667 (2005).   DOI   ScienceOn
3 J. Qian, P. Liu, Y. Xiao, Y. Jiang, Y. Cao, X. Ai and H. Yang, Adv. Mater. 21, 3663 (2009).   DOI   ScienceOn
4 E. R. Leite, I. T. Weber, E. Longo and J. A. Varela, 12, 965 (2000).   DOI   ScienceOn
5 H. Song, L. Zhang, C. He, Y. Qu, Y. Tian and Y. Lv, 21, 5972 (2011).   DOI   ScienceOn
6 H. -C. Chiu and C. -S. Yeh, 111, 7256 (2007).
7 Y. -J. Choi, I. -S. Hwang, J. -G. Park, K. J. Choi, J. -H. Park and J. -H. Lee, Nanotechnology, 19, 095508 (2008).   DOI   ScienceOn
8 B. Wang, L. F. Zhu, Y. H. Yang, N. S. Xu and G. W. Yang, J. Phys. Chem. C, 112, 6643 (2008).   DOI   ScienceOn
9 D. -J. Yang, I. Kamienchick, D. Y. Youn, A. Rothschild and I. -D. Kim, Adv. Func. Mater., 20, 4258 (2010).   DOI   ScienceOn
10 Z. Wang, Z. Li, L. Liu, X. Xu, H. Zhang, W. Wang, W. Zheng and C. Wang, J. Am. Ceram. Soc., 93, 634 (2010).   DOI   ScienceOn
11 V. V. Sysoev, J. Goschnick, T. Schneider, E. Strelcov and A. Kolmakov, Nano Lett., 7, 3182 (2007).   DOI   ScienceOn