• Title/Summary/Keyword: Caffeic acid derivatives

Search Result 31, Processing Time 0.025 seconds

New Flavonol Glycosides from Leaves of Symplocarpus renifolius

  • Whang, Wan-Kyunn;Lee, Moo-Taek
    • Archives of Pharmacal Research
    • /
    • v.22 no.4
    • /
    • pp.423-427
    • /
    • 1999
  • A study was carried out to evaluate flavonol glycosides in leaves of Symplocarpus renifolius (Araceae). From the water fraction of the MeOH extract, three new flavonol glycosides were isolated along with three known compounds, Kaempferol-3-O-$\beta$-glucopyranosyl-($1{\rightarrow}2$)-$\beta$-D-glucopyranosyl-7-O-$\beta$-D-glucopyranoside, quercetin-3-O-$\beta$-D-glucopyranosy-1-($1{\rightarrow}2$)-$\beta$-D-glucopyranoside, and caffeic acid. The structures of the new flavonol glycosides were elucidated by chemical and spectral analyses a quercetin-3-O-$\beta$-D-glucopyranosyl-($1{\rightarrow}2$)-$\beta$-D-glucopyranosyl-7-O-$\beta$-D-glucopyranoside, isorhamnetin-3-O-$\beta$-D-glucopyranosyl-(1 2)-$\beta$-D-glucopyranosyl-7-O-$\beta$-D-glucopyranosdie, and quercetin-3-O$\beta$-D-glucopyranosyl-($1{\rightarrow}2$)-$\beta$-D-glycopyranosyl-7-O-($6^{IIII}$-trans-caffeoyl)-$\beta$-D-glucopyranoside.

  • PDF

Chlorogenic Acid Isomers from Sorbus commixta of Ulleung Island Origin and Their Inhibitory Effects against Advanced Glycation End Product (AGE) Formation and Radical Scavenging Activity (울릉 마가목의 클로로겐산 이성체의 최종당화산물의 생성 저해 및 라디칼 소거 활성)

  • Kim, Tae Hoon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.8
    • /
    • pp.1208-1213
    • /
    • 2016
  • Advanced glycation end product (AGE) formation and reactive oxygen species are potential therapeutic targets for the prevention of diabetic nephropathy and other pathogenic complications. Activity-guided isolation of an ethylacetate-soluble portion of 80% methanolic extract from fruits of Sorbus commixta of the Ulleung Island origin using AGE formation inhibition assay led to the isolation and identification of three caffeoylquinic acid derivatives of a previously known structure, 3-O-caffeoylquinic acid (neochlorogenic acid; 1), 4-O-caffeoylquinic acid (cryptochlorogenic acid; 2), and 5-O-caffeoylquinic acid (chlorogenic acid; 3). The structures of these compounds were confirmed by interpretation of nuclear magnetic resonance and mass spectrometry data. Among the isolates, the major metabolite, neochlorogenic acid (1) showed the most potent inhibitory effect against AGE formation with an $IC_{50}$ value of $167.5{\pm}3.5{\mu}M$. Furthermore, all isolated chlorogenic acid isomers were evaluated for their radical scavenging activity against peroxynitrite, and structurally related isomers 1, 2, and 3 exhibited potent inhibitory effects in this radical scavenging assay. This result suggests that the monocaffeoyl quinic acid derivatives isolated from S. commixta might be beneficial for the regulation of diabetic complications and related diseases.

Effect of Cryptochlorogenic Acid Extracted from Fruits of Sorbus commixta on Osteoblast Differentiation (마가목 열매에서 추출한 Cryptochlorogenic Acid 처리에 의한 조골세포 분화 촉진 효능)

  • Kim, Kyeong-Min;Kim, Tae Hoon;Jang, Won-Gu
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.3
    • /
    • pp.314-319
    • /
    • 2017
  • Chlorogenic acid, a well-known polyphenol, and its derivatives, ester of caffeic acid on quinic acid moiety, are abundant in coffee, tea, fruits, and various vegetables. This study examined the effects of cryptochlorogenic acid (CCA) on osteoblast differentiation. CCA-induced mRNA expression levels of osteogenic genes in MC3T3E1 and C3H10T1/2 cells were determined by RT-PCR and qPCR. CCA regulated expression of key osteogenic genes in the early stage of differentiation, including distal-less homeobox 5 (Dlx5), DNA-binding protein inhibitor (Id1), and runt-related transcription factor 2 (Runx2). These results suggest that CCA may enhance osteoblast differentiation through expression of osteogenic genes such as Id1, Dlx5, and Runx2, especially in the early stage.

Antioxidative Activity of Extract from Bangah Herb (방아 추출물의 항산화 효과)

  • Jhee, Ok-Hwa;Yang, Cha-Bum
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.1157-1163
    • /
    • 1996
  • Bangah, one of the herbs grown in Korea, was investigated for its antioxidant activity. The ether extracts of bangah herb was separated into neutral, phenolic, acidic and basic fractions and further separated into subfractions. Antioxidative activities were measured by hydrogen donating activity (HDA), peroxide value (POV), thiobarbituric acid (TBA) value and inhibition activity against lipid peroxidation of rat liver microsomes, The subfraction components were identified by GC/MS and NMR. Phenolic, though being very small in quantity, showed higher antioxidant activity at all assay system by hydrogen donating activity. POV, TBA value and inhibition activity against lipid peroxidation of rat liver microsomes. Five subfractions(P-1, P-2, P-3, P-4 and P-5) were fractionated from phenolic fraction of bangah herbs, and subfraction P-2 among them showed strong antioxidant activity on a level with BHT or gallic acid at each assay system. Four compounds (peak I, peak II, peak III and peak IV) were isolated by gas chromatogram of TMS derivatives of subfraction P-2 and thes compounds were confirmed to be phenolic substance having -OH and COOH group. There subfractions (N-1, N-2 and N-3) were fractionated from neutral fraction of bangah herbs, and subfraction N-2 among them showed highest antioxidant activity and inhibition activity against lipid peroxidation of rat liver microsomes. Subfraction N-2 was indentified to be estragole by H-NMR spectroscopy.

  • PDF

Progress on Phytochemical and Atopic Dermatitis-related Study of the Root of Lithospermum erythrorhizon (자초 뿌리의 함유성분 및 아토피피부염 관련 연구현황)

  • Ju, Ji-Hoon;Cho, Hyun-Hwan;Lee, Yong-Sup
    • Korean Journal of Pharmacognosy
    • /
    • v.41 no.2
    • /
    • pp.73-88
    • /
    • 2010
  • Traditionally, the root of Lithospermum erythrorhizon Sieb. et Zucc(L.E) has been used as efficacious therapy for inflammation, burns, frostbite and skin ailments (e.g eczema and psoriasis). It contains isohexenylnaphthoquinone derivatives (shikonin and its esters) and furylhydroquinones (shikonofurans) in lipophilic fractions and caffeic acid oligomers (rosmarinic acid, lithospermic acid B) in polar fractions. Recently, new preparative isolation and analysis procedures of shikonin along with its oligomers from the extract of L. erythrorhizon by the combination of high-speed counter-current chromatography with high-performance liquid chromatography-diode array detection have also been introduced. Although there have been many reports on the wound healing, antiinflammatory, and anticancer effects, the research on the effects of anti-atopic dermatitis of the root of L. erythrorhizon were relatively scarce. However, in recent years, new information gathered from research efforts, on the anti-atopic dermatitis properties of the extract or constituents of L. erythrorhizon has been accumulated. In this paper, the findings and advance on the in vitro and in vivo activities of L. erythrorhizon and its constituents especially focused on antiinflammatory and anti-atopic dermatitis effects are summarized. The phytochemical constituents of L. erythrorhizon or its tissue cultures are also presented. Although there are few to verify or refute its activity in human, one result of clinical study of the extract of L. erythrorhizon on the atopic dermatitis patients was introduced to assess the possibility of its clinical use. The reported mechanisms of action and in vivo pharmacological studies in different animal models for the various types of extracts or constituents of L. erythrorhizon are supportive of its therapeutic potential or dietary supplement, however, more evidence from clinically relevant models, as well as systemic studies on the active constituents or the various types of standardized extracts at the cellular and molecular level, are required.

3,4,5-Trihydroxycinnamic Acid Inhibits LPS-Induced iNOS Expression by Suppressing NF-${\kappa}B$ Activation in BV2 Microglial Cells

  • Lee, Jae-Won;Bae, Chang-Jun;Choi, Yong-Jun;Kim, Song-In;Kim, Nam-Ho;Lee, Hee-Jae;Kim, Sung-Soo;Kwon, Yong-Soo;Chun, Wan-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.2
    • /
    • pp.107-112
    • /
    • 2012
  • Although various derivatives of caffeic acid have been reported to possess a wide variety of biological activities such as neuronal protection against excitotoxicity and anti-inflammatory property, the biological activity of 3,4,5-trihydroxycinnamic acid (THC), a derivative of hydroxycinnamic acids, has not been clearly examined. The objective of the present study is to evaluate the anti-inflammatory effects of THC on lipopolysaccharide (LPS)-stimulated BV2 microglial cells. THC significantly suppressed LPS-induced excessive production of nitric oxide (NO) and expression of iNOS, which is responsible for the production of iNOS. THC also suppressed LPS-induced overproduction of pro-inflammatory cytokines such as IL-$1{\beta}$and TNF-${\alpha}$ in BV2 microgilal cells. Furthermore, THC significantly suppressed LPS-induced degradation of $I{\kappa}B$, which retains NF-${\kappa}B$ in the cytoplasm. Therefore, THC attenuated nuclear translocation of NF-${\kappa}B$, a major pro-inflammatory transcription factor. Taken together, the present study for the first time demonstrates that THC exhibits antiinflammatory activity through the suppression of NF-${\kappa}B$ transcriptional activation in LPS-stimulated BV2 microglial cells.

Lack of Mutagenecity of Green Pigments in Salmonella typhimurium (녹변화합물의 Salmonella typhimurium에 대한 돌연변이성 측정)

  • Kim, Han-Byul;Park, Han-Ul;Lee, Ju-Young;Kwon, Hoon-Jeong
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.3
    • /
    • pp.242-247
    • /
    • 2011
  • A greening phenomenon has been observed in some plant foods such as chestnut, sweet potato, burdock, and others during processing. The formation of the pigments was postulated as reactions of primary amino compounds with chi orogenic acid or caffeic acid ester, yielding acridine derivatives. Acridine derivatives have been regarded as mutagenetic agents. For the reason, the bacterial reverse mutation test was carried out to evaluate the genotoxicity of green pigment using Salmonella typhimurium TA98 and TA100. Alanine, arginine, aspartic acid, glycine, lysine, and phenylalanine were reacted repectively with chlorogenic acid to synthesize model compound. Green pigment was extracted from sweet potato. Maximum concentration of 2 and 50 mg/plate was tested for the synthetic green pigments and extracted green pigment respectively, taking bacterial survival, solubility, and color intensity into consideration. There was no signigicant increase in the reverse mutation either with or without S9 activation system by any test material. Though further studies with other genotoxicity test system are necessary, both synthetic and sweet potato green pigments seemed not to cause mutation despite the acridine moiety in their structures.

The study of oligopepetide synthesis and biological activity (올리고 펩타이드 유도체의 합성과 생리활성에 관한 연구)

  • Kim, Bo-Mi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.62-70
    • /
    • 2018
  • In this study, we synthesized Oligo Peptide (Lys-Val-Ala-Arg-Pro: KVARP) and peptide derivatives using Solid Phase Peptide Synthesis(SPPS). KVARP was commonly known to improve whitening of skin. We measured bio-activity of the synthesized compounds. The whitening effect was measured in tyrosinase inhibition and the result showed to be highly effective with 93% inhibition rate at $5000{\mu}g/m{\ell}$ of Geranic-KVARP, on the other hand the IC50 value was $68{\mu}g/m{\ell}$. The wrinkle-reducing effect was measured by elastase inhibition at a concentration of 63% at $400{\mu}g/m{\ell}$ of Salicylic-KVARP, and the IC50 value was $253{\mu}g/m{\ell}$. In the DPPH assay, Caffeic-KVARP showed more than 95% antioxidant activity at $400{\mu}g/m{\ell}$ with high concentration and IC50 value was $31{\mu}g/m{\ell}$. The anti-inflammatory effect of Nitric Oxide inhibition was 67% at $400{\mu}g/m{\ell}$ of Lipoic-KVARP. Therefore, the four types of KVARP derivative that were synthesized from various experiments has shown that it could have potential to be used to develop new medicines, cosmetics as well as in various industries.

Characterization of Anti-Advanced Glycation End Products (AGEs) and Radical Scavenging Constituents from Ainsliaea acerifolia (단풍취의 최종당화산물 생성 저해 및 라디칼 소거 물질의 동정)

  • Jeong, Gyeng Han;Kim, Tae Hoon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.6
    • /
    • pp.759-764
    • /
    • 2017
  • Reactive oxygen species (ROS) and advanced glycation end products (AGEs) are valuable therapeutic targets for the regulation of diabetic complications. Activity-guided isolation of the ethylacetate (EtOAc)-soluble portion of 70% ethanolic extract from aerial parts of Ainsliaea acerifolia was performed, followed by AGE formation inhibition assay for the characterization of four dicaffeoylquinic acid derivatives of a previously known structure, methyl 3,5-di-O-caffeoyl-epi-quinate (1), 3,5-di-O-caffeoyl-epi-quinic acid (2), 4,5-di-O-caffeoyl-quinic acid (3), and methyl 4,5-di-O-caffeoyl-quinate (4). The structures of these compounds were confirmed by interpretation of nuclear magnetic resonance (NMR, $^1H-$, $^{13}C-NMR$, two-dimensional NMR) and mass spectroscopic data. Among the isolates, the major secondary metabolites, 3,5-di-O-caffeoyl-epi-quinic acid (2) and 4,5-di-O-caffeoyl-quinic acid (3) showed the most potent inhibitory effects against AGE formation with $IC_{50}$ values of $0.6{\pm}0.1{\mu}M$ and $0.4{\pm}0.1{\mu}M$, respectively. Furthermore, all isolated dicaffeoylquinic acid derivatives were evaluated for their radical scavenging activities using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical, and compound 3 exhibited the most potent inhibitory effect in a concentration-dependent manner. This result suggests that the caffeoylquinic acid dimers isolated from A. acerifolia might be beneficial for the prevention of diabetic complications and related diseases.

Comparison of Phenolic Acid from Shoots of Aralia elata and Kalopanax pictus Cultivated in Korea Using UPLC-DAD-ESI(+)-QToF/MS (UPLC-DAD-ESI(+)-QToF/MS를 이용한 국내산 두릅나무 및 음나무 순 내 페놀산 특성 비교)

  • Kim, Young Jin;Kim, Heon-Woong;Lee, Min-Ki;Lee, Seon-Hye;Asamenew, Gelila;Lee, Suji;Lee, Sang Hoon;Cha, Youn-Soo;Kim, Jung Bong
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.260-267
    • /
    • 2018
  • BACKGROUND: In this study, shoots of Aralia elata and Kalopanax pictus which belong to the Araliaceae family were analyzed using UPLC-DAD-ESI(+)-QToF/MS to characterize of individual phenolic acids. METHODS AND RESULTS: Total thirteen phenolic acids were identified, and nine hydroxycinnamic acid derivatives have been identified for the first time in shoots of Aralia elata and Kalopanax pictus. For total phenolic acid content (mg/100g dry weight), shoots of Aralia elata and Kalopanax pictus showed 754.8 and 845.3 mg/100g, respectively. 5-O-Caffeoylquinic acid (49%) and 3,5-di-O-caffeoylquinic acid (44%) were found as major phenolic acids in Aralia elata, while 5-O-caffeoylquinic acid (91%) was a major component in Kalopanax pictus. CONCLUSION: On comparing the two plants, it was considered that the biosynthesis of 3,5-di-O-caffeoylquinic acid can be affected by 5-O-caffeoylquinic acid in Aralia elata.