Browse > Article
http://dx.doi.org/10.3746/jkfn.2017.46.3.314

Effect of Cryptochlorogenic Acid Extracted from Fruits of Sorbus commixta on Osteoblast Differentiation  

Kim, Kyeong-Min (Department of Biotechnology, Daegu University)
Kim, Tae Hoon (Department of Food Engineering, Daegu University)
Jang, Won-Gu (Department of Biotechnology, Daegu University)
Publication Information
Journal of the Korean Society of Food Science and Nutrition / v.46, no.3, 2017 , pp. 314-319 More about this Journal
Abstract
Chlorogenic acid, a well-known polyphenol, and its derivatives, ester of caffeic acid on quinic acid moiety, are abundant in coffee, tea, fruits, and various vegetables. This study examined the effects of cryptochlorogenic acid (CCA) on osteoblast differentiation. CCA-induced mRNA expression levels of osteogenic genes in MC3T3E1 and C3H10T1/2 cells were determined by RT-PCR and qPCR. CCA regulated expression of key osteogenic genes in the early stage of differentiation, including distal-less homeobox 5 (Dlx5), DNA-binding protein inhibitor (Id1), and runt-related transcription factor 2 (Runx2). These results suggest that CCA may enhance osteoblast differentiation through expression of osteogenic genes such as Id1, Dlx5, and Runx2, especially in the early stage.
Keywords
cryptochlorogenic acid; osteoblast differentiation; mesenchymal stem cell; preosteoblast; Runx2;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Letton RW, Fanti P, Malluche HH. 1990. Regulation of 25-hydroxyvitamin D3 metabolism in cultures of osteoblastic cells. J Bone Miner Res 5: 815-823.
2 Yin T, Li L. 2006. The stem cell niches in bone. J Clin Invest 116: 1195-1201.   DOI
3 Cohen MM Jr. 2002. Bone morphogenetic proteins with some comments on fibrodysplasia ossificans progressiva and NOGGIN. Am J Med Genet 109: 87-92.   DOI
4 Bodine PV, Zhao W, Kharode YP, Bex FJ, Lambert AJ, Goad MB, Gaur T, Stein GS, Lian JB, Komm BS. 2004. The Wnt antagonist secreted frizzled-related protein-1 is a negative regulator of trabecular bone formation in adult mice. Mol Endocrinol 18: 1222-1237.   DOI
5 Baron R, Rawadi G, Roman-Roman S. 2006. Wnt signaling: a key regulator of bone mass. Curr Top Dev Biol 76: 103-127.
6 Hu H, Hilton MJ, Tu X, Yu K, Ornitz DM, Long F. 2005. Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development 132: 49-60.
7 Peng Y, Kang Q, Luo Q, Jiang W, Si W, Liu BA, Luu HH, Park JK, Li X, Luo J, Montag AG, Haydon RC, He TC. 2004. Inhibitor of DNA binding/differentiation helix-loophelix proteins mediate bone morphogenetic protein-induced osteoblast differentiation of mesenchymal stem cells. J Biol Chem 279: 32941-32949.   DOI
8 Maeda Y, Tsuji K, Nifuji A, Noda M. 2004. Inhibitory helix-loop-helix transcription factors Id1/Id3 promote bone formation in vivo. J Cell Biochem 93: 337-344.   DOI
9 Katagiri T, Yamaguchi A, Komaki M, Abe E, Takahashi N, Ikeda T, Rosen V, Wozney JM, Fujisawa-Sehara A, Suda T. 1994. Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol 27: 1755-1766.
10 Lee MH, Kim YJ, Yoon WJ, Kim JI, Kim BG, Hwang YS, Wozney JM, Chi XZ, Bae SC, Choi KY, Cho JY, Choi JY, Ryoo HM. 2005. Dlx5 specifically regulates Runx2 type II expression by binding to homeodomain-response elements in the Runx2 distal promoter. J Biol Chem 280: 35579-35587.   DOI
11 Ryoo HM, Hoffmann HM, Beumer T, Frenkel B, Towler DA, Stein GS, Stein JL, van Wijnen AJ, Lian JB. 1997. Stage-specific expression of Dlx-5 during osteoblast differentiation: involvement in regulation of osteocalcin gene expression. Mol Endocrinol 11: 1681-1694.   DOI
12 Komori T. 2005. Regulation of skeletal development by the Runx family of transcription factors. J Cell Biochem 95: 445-453.   DOI
13 Marie PJ. 2008. Transcription factors controlling osteoblastogenesis. Arch Biochem Biophys 473: 98-105.   DOI
14 Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T. 1997. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89: 755-764.   DOI
15 Jeon EJ, Lee KY, Choi NS, Lee MH, Kim HN, Jin YH, Ryoo HM, Choi JY, Yoshida M, Nishino N, Oh BC, Lee KS, Lee YH, Bae SC. 2006. Bone morphogenetic protein-2 stimulates Runx2 acetylation. J Biol Chem 281: 16502-16511.   DOI
16 Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen BR, Selby PB, Owen MJ. 1997. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89: 765-771.   DOI
17 Yang HM, Seo HS. 2013. Effects of ascorbic acid on osteoblast differentiation in MC3T3-E1 cells. Soonchunhyang Med Sci 19: 93-98.   DOI
18 Kim BG, Kim HJ, Park HJ, Kim YJ, Yoon WJ, Lee SJ, Ryoo HM, Cho JY. 2006. Runx2 phosphorylation induced by fibroblast growth factor-2/protein kinase C pathways. Proteomics 6: 1166-1174.   DOI
19 Kim MJ, Im NK, Yu MH, Kim HJ, Lee IS. 2011. Effects of extracts from sarcocarp, peels, and seeds of avocado on osteoblast differentiation and osteoclast formation. J Korean Soc Food Sci Nutr 40: 919-927.   DOI
20 Seo J, Hwang ES, Kim GH. 2011. Antioxidative and differentiation effects of Artemisia capillaris T. extract on hydrogen peroxide-induced oxidative damage of MC3T3-E1 osteoblast cells. J Korean Soc Food Sci Nutr 40: 1532-1536.   DOI
21 Shin JM, Park CK, Shin EJ, Jo TH, Hwang IK. 2008. Effects of Scutellaria radix extract on osteoblast differentiation and osteoclast formation. Korean J Food Sci Technol 40: 674-679.
22 Canalis E. 1985. Effect of growth factors on bone cell replication and differentiation. Clin Orthop Relat Res 193: 246-263.
23 Canalis E, McCarthy T, Centrella M. 1988. Growth factors and the regulation of bone remodeling. J Clin Invest 81: 277-281.   DOI
24 Chen C, Qin Y, Fang JP, Ni XY, Yao J, Wang HY, Ding K. 2015. WSS25, a sulfated polysaccharide, inhibits RANKLinduced mouse osteoclast formation by blocking SMAD/ID1 signaling. Acta Pharmacol Sin 36: 1053-1064.   DOI
25 Herrmann K. 1989. Occurrence and content of hydroxycinnamic and hydroxybenzoic acid compounds in foods. Crit Rev Food Sci Nutr 28: 315-347.   DOI
26 Yamaguchi A, Komori T, Suda T. 2000. Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1. Endocr Rev 21: 393-411.   DOI
27 Franceschi RT, Ge C, Xiao G, Roca H, Jiang D. 2007. Transcriptional regulation of osteoblasts. Ann N Y Acad Sci 1116: 196-207.   DOI
28 de Jong DS, Vaes BL, Dechering KJ, Feijen A, Hendriks JM, Wehrens R, Mummery CL, van Zoelen EJ, Olijve W, Steegenga WT. 2004. Identification of novel regulators associated with early-phase osteoblast differentiation. J Bone Miner Res 19: 947-958.   DOI
29 Hu YJ, Chen CH, Zhou S, Bai AM, Ou-Yang Y. 2012. The specific binding of chlorogenic acid to human serum albumin. Mol Biol Rep 39: 2781-2787.   DOI
30 Nakatani N, Kayano S, Kikuzaki H, Sumino K, Katagiri K, Mitani T. 2000. Identification, quantitative determination, and antioxidative activities of chlorogenic acid isomers in prune (Prunus domestica L.). J Agric Food Chem 48: 5512-5516.   DOI
31 Mullen W, Nemzer B, Ou B, Stalmach A, Hunter J, Clifford MN, Combet E. 2011. The antioxidant and chlorogenic acid profiles of whole coffee fruits are influenced by the extraction procedures. J Agric Food Chem 59: 3754-3762.   DOI
32 Seo CS, Lim HS, Jeong SJ, Ha H, Shin HK. 2013. HPLCPDA analysis and anti-inflammatory effects of Mori Cortex Radicis. Nat Prod Commun 8: 1443-1446.
33 Centrella M, McCarthy TL, Canalis E. 1987. Transforming growth factor beta is a bifunctional regulator of replication and collagen synthesis in osteoblast-enriched cell cultures from fetal rat bone. J Biol Chem 262: 2869-2874.
34 Pols HA, Felsenberg D, Hanley DA, Stepan J, Munoz-Torres M, Wilkin TJ, Qin-sheng G, Galich AM, Vandormael K, Yates AJ, Stych B. 1999. Multinational, placebo-controlled, randomized trial of the effects of alendronate on bone density and fracture risk in postmenopausal women with low bone mass: results of the FOSIT study. Fosamax International Trial Study Group. Osteoporos Int 9: 461-468.   DOI