• 제목/요약/키워드: Caenorhabditis.elegans

검색결과 196건 처리시간 0.021초

Longevity and Stress Resistant Property of 6-Gingerol from Zingiber officinale Roscoe in Caenorhabditis elegans

  • Lee, Eun Byeol;Kim, Jun Hyeong;An, Chang Wan;Kim, Yeong Jee;Noh, Yun Jeong;Kim, Su Jin;Kim, Ju-Eun;Shrestha, Abinash Chandra;Ham, Ha-Neul;Leem, Jae-Yoon;Jo, Hyung-Kwon;Kim, Dae-Sung;Moon, Kwang Hyun;Lee, Jeong Ho;Jeong, Kyung Ok;Kim, Dae Keun
    • Biomolecules & Therapeutics
    • /
    • 제26권6호
    • /
    • pp.568-575
    • /
    • 2018
  • In order to discover lifespan-extending compounds made from natural resources, activity-guided fractionation of Zingiber officinale Roscoe (Zingiberaceae) ethanol extract was performed using the Caenorhabditis elegans (C. elegans) model system. The compound 6-gingerol was isolated from the most active ethyl acetate soluble fraction, and showed potent longevity-promoting activity. It also elevated the survival rate of worms against stressful environment including thermal, osmotic, and oxidative conditions. Additionally, 6-gingerol elevated the antioxidant enzyme activities of C. elegans, and showed a dose-depend reduction of intracellular reactive oxygen species (ROS) accumulation in worms. Further studies demonstrated that the increased stress tolerance of 6-gingerol-mediated worms could result from the promotion of stress resistance proteins such as heat shock protein (HSP-16.2) and superoxide dismutase (SOD-3). The lipofuscin levels in 6-gingerol treated intestinal worms were decreased in comparison to the control group. No significant 6-gingerol-related changes, including growth, food intake, reproduction, and movement were noted. These results suggest that 6-gingerol exerted longevity-promoting activities independently of these factors and could extend the human lifespan.

The fucose containing polymer (FCP) rich fraction of Ascophyllum nodosum (L.) Le Jol. protects Caenorhabditis elegans against Pseudomonas aeruginosa by triggering innate immune signaling pathways and suppression of pathogen virulence factors

  • Kandasamy, Saveetha;Khan, Wajahatullah;Kulshreshtha, Garima;Evans, Franklin;Critchley, Alan T.;Fitton, J.H.;Stringer, Damien N.;Gardiner, Vicki-Anne;Prithiviraj, Balakrishnan
    • ALGAE
    • /
    • 제30권2호
    • /
    • pp.147-161
    • /
    • 2015
  • Brown algal extracts have long been used as feed supplements to promote health of farm animals. Here, we show new molecular insights in to the mechanism of action of a fucose containing polymer (FCP) rich fraction from the brown seaweed Ascophyllum nodosum using the Caenorhabditis elegans-Pseudomonas aeruginosa PA14 infection model. FCP enhanced survival of C. elegans against pathogen stress, correlated with up-regulation of key immune response genes such as: lipases, lysozyme (lys-1), saponin-like protein (spp-1), thaumatin-like protein (tlp-1), matridin SK domain protein (msk-1), antibacterial protein (abf-1), and lectin family protein (lfp). Further, FCP caused down regulation of P. aeruginosa quorum sensing genes: (lasI, lasR, rhlI, and rhlR), secreted virulence factors (lipase, proteases, and elastases) and toxic metabolites (pyocyanin, hydrogen cyanide, and siderophore). Biofilm formation and motility of pathogenic bacteria were also greatly attenuated when the culture media were treated with FCP. Interestingly, FCP failed to mitigate the pathogen stress in skn-1, daf-2, and pmk-1 mutants of C. elegans. This indicated that, FCP treatment acted on the regulation of fundamental innate immune pathways, which are conserved across the majority of organisms including humans. This study suggests the possible use of FCP, a seaweed component, as a functional food source for healthy living.

Moringa oleifera Prolongs Lifespan via DAF-16/FOXO Transcriptional Factor in Caenorhabditis elegans

  • Im, Jun Sang;Lee, Ha Na;Oh, Jong Woo;Yoon, Young Jin;Park, Jin Suck;Park, Ji Won;Kim, Jung Hoon;Kim, Yong Sung;Cha, Dong Seok;Jeon, Hoon
    • Natural Product Sciences
    • /
    • 제22권3호
    • /
    • pp.201-208
    • /
    • 2016
  • Here in this study, we investigated the lifespan-extending effect and underlying mechanism of methanolic extract of Moringa olelifa leaves (MML) using Caenorhabditis elegans (C. elegans) model system. To define the longevity properties of MML we conducted lifespan assay and MML showed significant increase in lifespan under normal culture condition. In addition, MML elevated stress tolerance of C. elegans to endure against thermal, oxidative and osmotic stress conditions. Our data also revealed that increased activities of antioxidant enzymes and expressions of stress resistance proteins were attributed to MML-mediated enhanced stress resistance. We further investigated the involvement of MML on the aging-related factors such as growth, food intake, fertility, and motility. Interestingly, MML significantly reduced growth and egg-laying, suggesting these factors were closely linked with MML-mediated longevity. We also observed the movement of aged worms to estimate the effects of MML on the health span. Herein, MML efficiently elevated motility of aged worms, indicating MML may affect health span as well as lifespan. Our genetic analysis using knockout mutants showed that lifespan-extension activity of MML was interconnected with several genes such as skn-1, sir-2.1, daf-2, age-1 and daf-16. Based on these results, we could conclude that MML prolongs the lifespan of worms via activation of SKN-1 and SIR-2.1 and inhibition of insulin/IGF pathway, followed by DAF-16 activation.

Probiotic Potential of Enterococcus faecium Isolated from Chicken Cecum with Immunomodulating Activity and Promoting Longevity in Caenorhabditis elegans

  • Sim, Insuk;Park, Keun-Tae;Kwon, Gayeung;Koh, Jong-Ho;Lim, Young-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권6호
    • /
    • pp.883-892
    • /
    • 2018
  • Probiotics, including Enterococcus faecium, confer a health benefit on the host. An Enterococcus strain was isolated from healthy chicken cecum, identified as E. faecium by 16S rDNA gene sequence analysis, and designated as E. faecium L11. To evaluate the potential of E. faecium L11 as a probiotic, the gastrointestinal tolerance, immunomodulatory activity, and lifespan extension properties of the strain were assayed. E. faecium L11 showed >66% and >62% survival in artificial gastric juice (0.3% pepsin, pH 2.5) and simulated small intestinal juice (0.5% bile salt and 0.1% pancreatin), respectively. Heat-killed E. faecium L11 significantly (p < 0.05) increased immune cell proliferation compared with controls, and stimulated the production of cytokines (IL-6 and $TNF-{\alpha}$) by activated macrophages obtained from ICR mice. In addition, E. faecium L11 showed a protective effect against Salmonella Typhimurium infection in Caenorhabditis elegans. In addition, feeding E. faecium L11 significantly (p < 0.05) extended the lifespan of C. elegans compared with the control. Furthermore, genes related to aging and host defense were upregulated in E. faecium L11-fed worms. In conclusion, E. faecium L11, which prolongs the lifespan of C. elegans, may be a potent probiotic supplement for livestock.

삼채 잎의 예쁜꼬마선충 내의 항산화 효과 (Anti-oxidative Effects of Allium hookeri Leaves in Caenorhabditis elegans)

  • 기별희;이은별;김준형;양재헌;김대근;김영수
    • 생약학회지
    • /
    • 제48권2호
    • /
    • pp.141-147
    • /
    • 2017
  • As an ongoing study about Allium hookeri (Liliaceae), this study was performed to evaluate the anti-oxidative effect of the leaves of this plant. Ethanol extract of A. hookeri leaves was successively partitioned as methylene chloride, ethyl acetate, n-butanol and $H_2O$ soluble fractions. The ethyl acetate soluble fraction showed the most potent DPPH radical scavenging and superoxide quenching activities among those fractions. To prove antioxidant activity of ethyl acetate fraction of A. hookeri leaves, we checked the activities of superoxide dismutase (SOD) and catalase, and intracellular ROS level and oxidative stress tolerance in Caenorhabditis elegans. In addition, to verify if increased stress tolerance of C. elegans by treating of ethyl acetate fraction was due to regulation of stress-response gene, we checked SOD-3 expression using transgenic strain. As a consequence, the ethyl acetate fraction increased SOD and catalase activity of C. elegans, and reduced intracellular ROS accumulation in a dose-dependent manner. Besides, the ethyl acetate fraction-treated CF1553 worms showed higher SOD-3::GFP intensity.

구증구포 맥문동 Ethyl acetate 분획물의 예쁜 꼬마선충 내의 항산화 효과 (Antioxidant Activity of Ethyl acetate Fraction of the Guzeunggupo-procossed Platycodon grandiflorum A. De Candolle roots in Caenorhabditis elegans)

  • 권강무;김준형;양재헌;기별희;황인현;김대근
    • 생약학회지
    • /
    • 제52권3호
    • /
    • pp.163-169
    • /
    • 2021
  • Using the Caenorhabditis elegans model system, the antioxidant activity of methanol extract of the guzeunggupoprocessed Liriope platyphylla F. T. Wang (Liliaceae) tuber was calculated. Between the methanol extracts of guzeunggupo-processed and non-processed L. platyphylla tuber, the processed L. platyphylla tuber showed higher DPPH radical scavenging effect than the non-processed one. The ethyl acetate soluble fraction of the methanol extract of the guzeunggupo-processed L. platyphylla tuber showed the best DPPH radical scavenging activity. The ethyl acetate fraction of the processed sample was measured for the activities of superoxide dismutase (SOD), catalase, and oxidative stress tolerance by using C. elegans along with reactive oxygen species level. In addition, to verify the regulation of the stress response gene is responsible for the increased stress tolerance of C. elegans treated by the ethyl acetate fraction of the processed sample, SOD-3 expression was measured using a transgenic strain (CF1553). Consequently, the ethyl acetate fraction of the processed sample, increased SOD and catalase activities, and decreased ROS accumulation in a dose-dependent manner. Furthermore, the ethyl acetate fraction of the processed sample-treated CF1553 worm showed higher SOD-3::GFP intensity than the control worm.

구증구포 도라지 Ethyl Acetate 분획물의 예쁜 꼬마선충 내의 항산화 효과 (Antioxidant Activity of Ethyl Acetate Fraction of the Guzeunggupo-procossed Platycodon grandiflorum A. De Candolle Roots in Caenorhabditis elegans)

  • 권강무;김준형;양재헌;기별희;황인현;김대근
    • 생약학회지
    • /
    • 제51권4호
    • /
    • pp.325-331
    • /
    • 2020
  • Through Caenorhabditis elegans model system, the antioxidant activity of methanol extract of the guzeunggupo-processed Platycodon grandiflorum A. De Candolle (Campanulaceae) roots was calculated. Between the methanol extracts of guzeunggupo-processed and non-processed P. grandiflorum roots, the processed P. grandiflorum root showed higher DPPH radical scavenging effect than the non-processed one. The ethyl acetate soluble fraction of the methanol extract of the guzeunggupo-processed P. grandiflorum showed the best DPPH radical scavenging activity. The ethyl acetate fraction of the processed sample was measured for the activities of superoxide dismutase (SOD), catalase, and oxidative stress tolerance by using C. elegans along with reactive oxygen species level. In addition, to confirm the regulation of the stress response gene is responsible for the increased stress tolerance of C. elegans treated by the ethyl acetate fraction of the processed sample, SOD-3 expression was measured using a transgenic strain (CF1553). Consequently, the ethyl acetate fraction of the processed sample, increased SOD and catalase activities, and decreased ROS accumulation in a dose-dependent manner. Furthermore, the ethyl acetate fraction of the processed sample-treated CF1553 worm showed higher SOD-3::GFP intensity than the control worm.

Molecular characterization and functionality of rumen-derived extracellular vesicles using a Caenorhabditis elegans animal model

  • Hyejin Choi;Daye Mun;Sangdon Ryu;Min-jin Kwak;Bum-Keun Kim;Dong-Jun Park;Sangnam Oh;Younghoon Kim
    • Journal of Animal Science and Technology
    • /
    • 제65권3호
    • /
    • pp.652-663
    • /
    • 2023
  • The rumen fluids contain a wide range of bacteria, protozoa, fungi, and viruses. The various ruminal microorganisms in the rumen provide nutrients by fermenting the forage they eat. During metabolic processes, microorganisms present in the rumen release diverse vesicles during the fermentation process. Therefore, in this study, we confirmed the function of rumen extracellular vesicles (EVs) and their interaction with the host. We confirmed the structure of the rumen EVs by transmission electron microscope (TEM) and the size of the particles using nanoparticle tracking analysis (NTA). Rumen EVs range in size from 100 nm to 400 nm and are composed of microvesicles, microparticles, and ectosomes. Using the Caenorhabditis elegans smart animal model, we verified the interaction between the host and rumen EVs. Exposure of C. elegans to rumen EVs did not significantly enhance longevity, whereas exposure to the pathogenic bacteria Escherichia coli O157:H7 and Staphylococcus aureus significantly increased lifespan. Furthermore, transcriptome analysis showed gene expression alterations in C. elegans exposed to rumen EVs, with significant changes in the metabolic pathway, fatty acid degradation, and biosynthesis of cofactors. Our study describes the effect of rumen EV interactions with the host and provides novel insights for discovering biotherapeutic agents in the animal industry.

Control of asymmetric cell division in early C. elegans embryogenesis: teaming-up translational repression and protein degradation

  • Hwang, Sue-Yun;Rose, Lesilee S.
    • BMB Reports
    • /
    • 제43권2호
    • /
    • pp.69-78
    • /
    • 2010
  • Asymmetric cell division is a fundamental mechanism for the generation of body axes and cell diversity during early embryogenesis in many organisms. During intrinsically asymmetric divisions, an axis of polarity is established within the cell and the division plane is oriented to ensure the differential segregation of developmental determinants to the daughter cells. Studies in the nematode Caenorhabditis elegans have contributed greatly to our understanding of the regulatory mechanisms underlying cell polarity and asymmetric division. However, much remains to be elucidated about the molecular machinery controlling the spatiotemporal distribution of key components. In this review we discuss recent findings that reveal intricate interactions between translational control and targeted proteolysis. These two mechanisms of regulation serve to carefully modulate protein levels and reinforce asymmetries, or to eliminate proteins from certain cells.

토양선충 Caenorhabditis elegans의 스트레스 관련 유전자 발현을 이용한 시간에 다른 카드뮴의 독성영향 (Time-dependent Toxic Effects of Cadmium Chloride on the Stress-related Gene Expression, Growth and Reproduction of the Soil Nematode Caenorhabditis elegans)

  • 노지연;이정경;권혁두;최진희
    • Environmental Analysis Health and Toxicology
    • /
    • 제23권1호
    • /
    • pp.11-16
    • /
    • 2008
  • 카드뮴은 환경과 인체 위해도에 큰 영향을 미치는 중요한 환경오염물질로 잘 알려져 있다. 본 연구에서는 토양선충인 Caenorhabditis elegans에 카드뮴을 12시간과 48시간으로 나누어 처리하여 시간에 따른 장, 단기적 독성영향을 알아보고자 하였다. 이때 생리학적 수준으로 성장 및 생식을 조사하고, 분자수준에서 스트레스 관련 유전자들의 시간에 따른 발현 정도를 관찰하였다. 생식에서는 단기노출(12시간) 시 그 영향이 대조군에 비해 크게 나타났으며, mtl-2의 스트레스 관련 유전자가 증가하였다 장기 노출(48시간) 시에는 cyp35a2, ape-1, sod-1, ctl-2 유전자가 대조군에 비해 약 $2{\sim}4$배 가량의 발현 증가 결과를 조사할 수 있었다. 본 연구결과들을 통해 스트레스 관련 유전자의 발현을 조사하는 것이 중요하고 민감한 생체지표가 된다는 것과 토양선충 C. elegans는 환경중 오염물질에 대한 장기, 단기적 영향을 평가하기 위한 좋은 생물학적 모델이 된다는 것을 알 수 있었다.