Browse > Article
http://dx.doi.org/10.22889/KJP.2020.51.4.325

Antioxidant Activity of Ethyl Acetate Fraction of the Guzeunggupo-procossed Platycodon grandiflorum A. De Candolle Roots in Caenorhabditis elegans  

Kwon, Kang Mu (College of Pharmacy, Woosuk University)
Kim, Jun Hyeong (Department of Food and Biotechnology, Woosuk University)
Yang, Jae Heon (Ainara)
Ki, Byeolhui (College of Pharmacy, Woosuk University)
Hwang, In Hyun (Department of Food and Biotechnology, Woosuk University)
Kim, Dae Keun (College of Pharmacy, Woosuk University)
Publication Information
Korean Journal of Pharmacognosy / v.51, no.4, 2020 , pp. 325-331 More about this Journal
Abstract
Through Caenorhabditis elegans model system, the antioxidant activity of methanol extract of the guzeunggupo-processed Platycodon grandiflorum A. De Candolle (Campanulaceae) roots was calculated. Between the methanol extracts of guzeunggupo-processed and non-processed P. grandiflorum roots, the processed P. grandiflorum root showed higher DPPH radical scavenging effect than the non-processed one. The ethyl acetate soluble fraction of the methanol extract of the guzeunggupo-processed P. grandiflorum showed the best DPPH radical scavenging activity. The ethyl acetate fraction of the processed sample was measured for the activities of superoxide dismutase (SOD), catalase, and oxidative stress tolerance by using C. elegans along with reactive oxygen species level. In addition, to confirm the regulation of the stress response gene is responsible for the increased stress tolerance of C. elegans treated by the ethyl acetate fraction of the processed sample, SOD-3 expression was measured using a transgenic strain (CF1553). Consequently, the ethyl acetate fraction of the processed sample, increased SOD and catalase activities, and decreased ROS accumulation in a dose-dependent manner. Furthermore, the ethyl acetate fraction of the processed sample-treated CF1553 worm showed higher SOD-3::GFP intensity than the control worm.
Keywords
Guzeugupo-processed Platycodon grandiflorum; Caenorhabditis elegans; Antioxidant activity; SOD; Catalase;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Aebi, H. (1984) Catalase in vitro. Methods Enzymol. 105: 121-126.   DOI
2 Kim, H. N., Seo, H. W., Kim, B. S., Lim H. J., Lee, H, N., Park, J. S., Yoon, Y. J., Oh, J. W., Oh, M. J., Kwon, J., Oh, C. H., Cha, D. S. and Jeon, H. (2015) Lindera obtusiloba extends lifespan of Caenorhabditis elegans. Nat. Prod. Sci. 21: 128-133.
3 Mekheimer, R. A., Sayed, A. A. and Ahmed, E. A. (2012) Novel 1,2,4-triazolo[1,5-a]pyridines and their fused ring systems attenuate oxidative stress and prolong lifespan of Caenorhabiditis elegans. J. Med. Chem. 55: 4169-4177.   DOI
4 Kobet, R. A., Pan, X., Zhang, B., Pak, S. C., Asch, A. S. and Lee, M.-H. (2014) Caenorhabditis elegans: A model system for anti-cancer drug discovery and therapeutic target identification. Biomol. Ther. 22: 371-383.   DOI
5 Luo, S., Jiang, X., Jia, L., Tan, C.,Li, M., Yang, Q., Du, Y. and Ding, C. (2019) In vivo and in vitro antioxidant activities of methanol extracts from olive leaves on Caenorhabditis elegans. Molecules 704: 1-14.
6 Lephart, E. D. (2016) Skin aging and oxidative stress: Equol's anti-aging effects via biochemical and molecular mechanisms. Ageing Res. Rev. 31: 36-54.   DOI
7 Alugoju. P., VKD, K. S. and Periyasamy, L. (2018) Effect of short-term quercetin, caloric restriction and combined treatment on age-related oxidative stress markers in the rat cerebral cortex. CNS Neurol Disord. Drug Targets 17: 119-131.   DOI
8 Sheng, Y., Liu, G., Wang, M., Lv, Z. and Du, P. (2017) A selenium polysaccharide from Platycodon grandiflorum rescues PC12 cell death caused by H2O2 via inhibiting oxidative stress. Int. J. Biol. Macromol. 104: 393-399.   DOI
9 Nilsson, R. and Liu, N.-A. (2020) Nuclear DNA damages generated by reactive oxygen molecules (ROS) under oxidative stress and their relevance to human cancers, including ionizing radiation-induced neoplasia part I: Physical, chemical and molecular biology aspects. Radiation Medicine and Protection 1: 140-152.   DOI
10 Ahmad, A., Kumari, P. and Ahmad, M. (2019) Apigenin attenuates edifenphos-induced toxicity by modulating ROS-mediated oxidative stress, mitochondrial dysfunction and caspase signal pathway in rat liver and kidney. Pestic. Biochem. Physiol. 159: 163-172.   DOI
11 Watal, G., Watal, A., Rai, P. K., Rai, D. K., Sharma, G. and Sharma, B. (2013) Biomedical applications of nano-antioxidant. Methods Mol. Biol. 1028: 147-151.   DOI
12 Eftekhari. A., Dizaj, S. M., Chodari, L., Sunar ,S., Hasanzadeh, A., Ahmadian. E. and Hasanzadeh. M. (2018) The promising future of nano-antioxidant therapy against environmental pollutants induced-toxicities. Biomed. Pharmacother. 103: 1018-1027.   DOI
13 Pisoschi, A. M., Pop, A., Cimpeanu, C. and Predoi, G. (2016) Antioxidant Capacity Determination in Plants and PlantDerived Products: A Review. Oxid. Med. Cell Longev. 2016: 9130976.
14 Lee, J. Y., Yoon, J. W., Kim, C. T. and Lim, S. T. (2004) Antioxidant activity of phenylpropanoid esters isolated and identified from Platycodon grandiflorum A. DC. Phytochemistry 65: 3033-3039.   DOI
15 Noh, E. M., Kim, J. M., Lee, H. Y., Song, H. K., Joung, S. O., Yang, H. J., Kim, M. J., Kim, K. S. and Lee, Y. R. (2019) Immuno-enhancement effects of Platycodon grandiflorum extracts in splenocytes and a cyclophosphamide-induced immunosuppressed rat model. BMC Complement Altern. Med. 19: 322.   DOI
16 Chun, J., Joo, E. J., Kang, M. and Kim, Y. S. (2013) Platycodin D induces anoikis and caspase-mediated apoptosis via p38 MAPK in AGS human gastric cancer cells. J. Cell Biochem. 114: 456-470.   DOI
17 Lee, J. Y., Hwang, W. I. and Lim, S. T. (2004) Antioxidant and anticancer activities of organic extracts from Platycodon grandiflorum A. De Candolle roots. J. Ethnopharmacol. 93: 409-415.   DOI
18 Fu, X. J., Liu, H. B., Wang, P. and Guan, H. S. (2009) A study on the antioxidant activity and tissues selective inhibition of lipid peroxidation by saponins from the roots of Platycodon grandiflorum. Am. J. Chin. Med. 37: 967-975.   DOI
19 Yoshida, T., Mori, K., Hatano, T., Okumura, T., Uehara, I., Komagoe, K., Fujita, Y. and Okuda, T. (1989) Studies on inhibition mechanism of autooxidation by tannins and flavonoids. V: radical scavenging effects of tannins and related polyphenols on 1,1-diphenyl-2-picrylhydrazyl radical. Chem. Pharm. Bull. 37: 1919-1921.   DOI
20 Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71-94.   DOI
21 Mekheimer, R. A., Sayed, A. A. and Ahmed, E. A. (2012) Novel 1,2,4-triazolo[1,5-a]pyridines and their fused ring systems attenuate oxidative stress and prolong lifespan of Caenorhabditis elegans. J. Med. Chem. 55: 4169-4177.   DOI