DOI QR코드

DOI QR Code

Moringa oleifera Prolongs Lifespan via DAF-16/FOXO Transcriptional Factor in Caenorhabditis elegans

  • Received : 2016.01.05
  • Accepted : 2016.03.28
  • Published : 2016.09.30

Abstract

Here in this study, we investigated the lifespan-extending effect and underlying mechanism of methanolic extract of Moringa olelifa leaves (MML) using Caenorhabditis elegans (C. elegans) model system. To define the longevity properties of MML we conducted lifespan assay and MML showed significant increase in lifespan under normal culture condition. In addition, MML elevated stress tolerance of C. elegans to endure against thermal, oxidative and osmotic stress conditions. Our data also revealed that increased activities of antioxidant enzymes and expressions of stress resistance proteins were attributed to MML-mediated enhanced stress resistance. We further investigated the involvement of MML on the aging-related factors such as growth, food intake, fertility, and motility. Interestingly, MML significantly reduced growth and egg-laying, suggesting these factors were closely linked with MML-mediated longevity. We also observed the movement of aged worms to estimate the effects of MML on the health span. Herein, MML efficiently elevated motility of aged worms, indicating MML may affect health span as well as lifespan. Our genetic analysis using knockout mutants showed that lifespan-extension activity of MML was interconnected with several genes such as skn-1, sir-2.1, daf-2, age-1 and daf-16. Based on these results, we could conclude that MML prolongs the lifespan of worms via activation of SKN-1 and SIR-2.1 and inhibition of insulin/IGF pathway, followed by DAF-16 activation.

Keywords

References

  1. Castillo-Quan, J. I.; Kinghorn, K. J.; Bjedov, I. Adv. Genet. 2015, 90, 1-101.
  2. Stohs, S. J.; Hartman, M. J. Phytother. Res. 2015, 29, 796-804. https://doi.org/10.1002/ptr.5325
  3. Anwar, F.; Latif, S.; Ashraf, M.; Gilani, A. H. Phytother. Res. 2007, 21, 17-25. https://doi.org/10.1002/ptr.2023
  4. Kumar Gupta, S.; Kumar, B.; Srinivasan, B. P.; Nag, T. C.; Srivastava, S.; Saxena, R.; Aggarwal, A. J. Ocul. Pharmacol. Ther. 2013, 29, 419-426. https://doi.org/10.1089/jop.2012.0089
  5. Ndhlala, A. R.; Mulaudzi, R.; Ncube, B.; Abdelgadir, H. A.; du Plooy, C. P.; Van Staden, J. Molecules. 2014, 19, 10480-10494. https://doi.org/10.3390/molecules190710480
  6. Waterman, C.; Cheng, D. M.; Rojas-Silva, P.; Poulev, A.; Dreifus, J.; Lila, M. A.; Raskin, I. Phytochemistry 2014, 103, 114-122. https://doi.org/10.1016/j.phytochem.2014.03.028
  7. Sashidhara, K. V.; Rosaiah, J. N.; Tyagi, E.; Shukla, R.; Raghubir, R.; Rajendran, S. M. Eur. J. Med. Chem. 2009, 44, 432-436. https://doi.org/10.1016/j.ejmech.2007.12.018
  8. Bass, T. M.; Weinkove, D.; Houthoofd, K.; Gems, D.; Partridge, L. Mech. Ageing Dev. 2007, 128, 546-552. https://doi.org/10.1016/j.mad.2007.07.007
  9. Abbas, S.; Wink, M. Planta Med. 2009, 75, 216-221. https://doi.org/10.1055/s-0028-1088378
  10. Saini, R. K.; Shetty, N. P.; Prakash, M.; Giridhar, P. J. Food Sci. Technol. 2014, 51, 2176-2182. https://doi.org/10.1007/s13197-014-1264-3
  11. Sadowska-Bartosz, I.; Bartosz, G. Biomed Res. Int. 2014, 2014, 404680.
  12. Brenner, S. Genetics 1974, 77, 71-94.
  13. Lithgow, G. J.; White, T. M.; Melov, S.; Johnson, T. E. Proc. Natl. Acad. Sci. U. S. A. 1995, 92, 7540-7544. https://doi.org/10.1073/pnas.92.16.7540
  14. Lee, E. Y.; Shim, Y. H.; Chitwood, D. J.; Hwang, S. B.; Lee, J.; Paik, Y. K. Biochem. Biophys. Res. Commun. 2005, 328, 929-936. https://doi.org/10.1016/j.bbrc.2005.01.050
  15. Mekheimer, R. A.; Sayed, A. A.; Ahmed, E. A. J. Med. Chem. 2012, 55, 4169-4177. https://doi.org/10.1021/jm2014315
  16. Horikawa, M.; Sakamoto, K. Biochem. Biophys. Res. Commun. 2009, 390, 1402-1407. https://doi.org/10.1016/j.bbrc.2009.11.006
  17. Aebi, H. Methods Enzymol. 1984, 105, 121-126.
  18. Kenyon, C. J. Nature 2010, 464, 504-512. https://doi.org/10.1038/nature08980
  19. Krishnamurthy, P. T.; Vardarajalu, A.; Wadhwani, A.; Patel, V. Indian J. Exp. Biol. 2015, 53, 98-103.
  20. Swindell, W. R. Aging (Albany NY) 2009, 1, 573-577.
  21. Solomon, A.; Bandhakavi, S.; Jabbar, S.; Shah, R.; Beitel, G. J.; Morimoto, R. I. Genetics 2004, 167, 161-170. https://doi.org/10.1534/genetics.167.1.161
  22. Liu, J.; Zhang, B.; Lei, H.; Feng, Z.; Liu, J.; Hsu, A. L.; Xu, X. Z. Cell Metab. 2013, 18, 392-402. https://doi.org/10.1016/j.cmet.2013.08.007
  23. Partridge, L.; Gems, D.; Withers, D. J. Cell 2005, 120, 461-472. https://doi.org/10.1016/j.cell.2005.01.026
  24. Bordone, L.; Guarente, L. Nat. Rev. Mol. Cell Biol. 2005, 6, 298-305. https://doi.org/10.1038/nrm1616
  25. Morck, C.; Pilon, M. BMC Dev. Biol. 2006, 6, 39. https://doi.org/10.1186/1471-213X-6-39
  26. Bokov, A.; Chaudhuri, A.; Richardson, A. Mech. Ageing Dev. 2004, 125, 811-826. https://doi.org/10.1016/j.mad.2004.07.009
  27. Murphy, C. T.; McCarroll, S. A.; Bargmann, C. I.; Fraser, A.; Kamath, R. S.; Ahringer, J.; Li, H.; Kenyon, C. Nature 2003, 424, 277-283. https://doi.org/10.1038/nature01789
  28. Schaffitzel, E.; Hertweck, M. Exp. Gerontol. 2006, 41, 557-563. https://doi.org/10.1016/j.exger.2006.02.008
  29. Tissenbaum, H. A.; Guarente, L. Nature 2001, 410, 227-230. https://doi.org/10.1038/35065638
  30. Berdichevsky, A.; Viswanathan, M.; Horvitz, H. R.; Guarente, L. Cell 2006, 125, 1165-1177. https://doi.org/10.1016/j.cell.2006.04.036
  31. Mouchiroud, L.; Houtkooper, R. H.; Moullan, N.; Katsyuba, E.; Ryu, D.; Canto, C.; Mottis, A.; Jo, Y. S.; Viswanathan, M.; Schoonjans, K.; Guarente, L.; Auwerx, J. Cell 2013, 154, 430-441. https://doi.org/10.1016/j.cell.2013.06.016
  32. Adachi, H.; Ishii, N. J. Gerontol. A Biol. Sci. Med. Sci. 2000, 55, B280-B285. https://doi.org/10.1093/gerona/55.6.B280
  33. Oh, S. W.; Mukhopadhyay, A.; Svrzikapa, N.; Jiang, F.; Davis, R. J.; Tissenbaum, H. A. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 4494-4499. https://doi.org/10.1073/pnas.0500749102
  34. Antebi, A. Nature 2007, 447, 536-537. https://doi.org/10.1038/447536a
  35. Park, S. K.; Tedesco, P. M.; Johnson, T. E. Aging Cell 2009, 8, 258-269. https://doi.org/10.1111/j.1474-9726.2009.00473.x

Cited by

  1. Evaluation of the anti‐aging and antioxidant action of Ananas sativa and Moringa oleifera in a fruit fly model organism vol.44, pp.11, 2016, https://doi.org/10.1111/jfbc.13426
  2. Moringa oleifera Protects SH-SY5YCells from DEHP-Induced Endoplasmic Reticulum Stress and Apoptosis vol.10, pp.4, 2016, https://doi.org/10.3390/antiox10040532