• Title/Summary/Keyword: Cache Data Structures

Search Result 21, Processing Time 0.022 seconds

Design of A On-Chip Caches for RISC Processors (RISC 프로세서 On-Chip Cache의 설계)

  • 홍인식;임인칠
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.8
    • /
    • pp.1201-1210
    • /
    • 1990
  • This paper proposes on-chip instruction and data cache memories on RISC reduced instruction set computer) architecture which supports fast instruction fetch and data read/write, and enables RISC processor under research to obtain high performance. In the execution of HLL(high level language) programs, heavily used local scalar variables are stored in large register file, but arrays, structures, and global scalar variables are difficult for compiler to allocate registers. These problems can be solved by on-chip Instruction/Data cache. And each cycle of instruction fetch, pad delay causes the lowering of the processors's performance. Cache memories are designed in CMOS technology and SRAM(static-RAM), that saves layout area and power dissipation, is used for instruction and data storage. To speed up and support RISC processor's piplined architecture efficiently, hardwired logic technology is used overall circuits i cache blocks. The schematic capture and timing simulation of proposed cache memorises are performed on Apollo DN4000 workstation using Mentor Graphics CAD tools.

  • PDF

KDBcs-Tree : An Efficient Cache Conscious KDB-Tree for Multidimentional Data (KDBcs-트리 : 캐시를 고려한 효율적인 KDB-트리)

  • Yeo, Myung-Ho;Min, Young-Soo;Yoo, Jae-Soo
    • Journal of KIISE:Databases
    • /
    • v.34 no.4
    • /
    • pp.328-342
    • /
    • 2007
  • We propose a new cache conscious indexing structure for processing frequently updated data efficiently. Our proposed index structure is based on a KDB-Tree, one of the representative index structures based on space partitioning techniques. In this paper, we propose a data compression technique and a pointer elimination technique to increase the utilization of a cache line. To show our proposed index structure's superiority, we compare our index structure with variants of the CR-tree(e.g. the FF CR-tree and the SE CR-tree) in a variety of environments. As a result, our experimental results show that the proposed index structure achieves about 85%, 97%, and 86% performance improvements over the existing index structures in terms of insertion, update and cache-utilization, respectively.

Extended Pairing Heap Algorithms Considering Cache Effect (캐쉬 효과를 고려한 확장된 Pairing Heap 알고리즘)

  • 정균락;김경훈
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.5_6
    • /
    • pp.250-257
    • /
    • 2003
  • As the memory access time becomes slower relative to the fast processor speed, most systems use cache memory to reduce the gap. The cache performance has an increasingly large impact on the performance of algorithms. Blocking is the well known method to utilize cache and has shown good results in multiplying matrices and search trees like d-heap. But if we use blocking in the data structures which require rotation during insertion or deletion, the execution time increases as the data movements between blocks are necessary. In this paper, we have proposed the extended pairing heap algorithms using block node and shown by experiments that our structure is superior Also in case of using block node, we use less memory space as the number of pointers decreases.

Cache Sensitive T-tree Index Structure (캐시를 고려한 T-트리 인덱스 구조)

  • Lee Ig-hoon;Kim Hyun Chul;Hur Jae Yung;Lee Snag-goo;Shim JunHo;Chang Juho
    • Journal of KIISE:Databases
    • /
    • v.32 no.1
    • /
    • pp.12-23
    • /
    • 2005
  • In the past decade, advances in speed of commodity CPUs have iu out-paced advances in memory latency Main-memory access is therefore increasingly a performance bottleneck for many computer applications, including database systems. To reduce memory access latency, cache memory incorporated in the memory subsystem. but cache memories can reduce the memory latency only when the requested data is found in the cache. This mainly depends on the memory access pattern of the application. At this point, previous research has shown that B+ trees perform much faster than T-trees because B+ trees are more cache conscious than T-trees, and also proposed 'Cache Sensitive B+trees' (CSB. trees) that are more cache conscious than B+trees. The goal of this paper is to make T-trees be cache conscious as CSB-trees. We propose a new index structure called a 'Cache Sensitive T-trees (CST-trees)'. We implemented CST-trees and compared performance of CST-trees with performance of other index structures.

4-Deap✽ : A Fast 4-ary Deap using Cache (4-딥✽ : 캐쉬를 이용한 빠른 4-원 딥)

  • Jung Haejae
    • The KIPS Transactions:PartA
    • /
    • v.11A no.7 s.91
    • /
    • pp.577-582
    • /
    • 2004
  • Double-ended Proirity queues(DEPQ) can be used in applications such as scheduling or sorting. The data structures for DEPQ can be con-structed with or without pointers. The implicit representation without pointers uses less memory space than pointer-based representation. This paper presents a novel fast implicit heap called 4-deapr$\ast$ which utilizes cache memory efficiently. Experimental results show that the 4-deap$\ast$ is faster than symmetric min-max heap as well as deap.

T-Cache: a Fast Cache Manager for Pipeline Time-Series Data (T-Cache: 시계열 배관 데이타를 위한 고성능 캐시 관리자)

  • Shin, Je-Yong;Lee, Jin-Soo;Kim, Won-Sik;Kim, Seon-Hyo;Yoon, Min-A;Han, Wook-Shin;Jung, Soon-Ki;Park, Se-Young
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.5
    • /
    • pp.293-299
    • /
    • 2007
  • Intelligent pipeline inspection gauges (PIGs) are inspection vehicles that move along within a (gas or oil) pipeline and acquire signals (also called sensor data) from their surrounding rings of sensors. By analyzing the signals captured in intelligent PIGs, we can detect pipeline defects, such as holes and curvatures and other potential causes of gas explosions. There are two major data access patterns apparent when an analyzer accesses the pipeline signal data. The first is a sequential pattern where an analyst reads the sensor data one time only in a sequential fashion. The second is the repetitive pattern where an analyzer repeatedly reads the signal data within a fixed range; this is the dominant pattern in analyzing the signal data. The existing PIG software reads signal data directly from the server at every user#s request, requiring network transfer and disk access cost. It works well only for the sequential pattern, but not for the more dominant repetitive pattern. This problem becomes very serious in a client/server environment where several analysts analyze the signal data concurrently. To tackle this problem, we devise a fast in-memory cache manager, called T-Cache, by considering pipeline sensor data as multiple time-series data and by efficiently caching the time-series data at T-Cache. To the best of the authors# knowledge, this is the first research on caching pipeline signals on the client-side. We propose a new concept of the signal cache line as a caching unit, which is a set of time-series signal data for a fixed distance. We also provide the various data structures including smart cursors and algorithms used in T-Cache. Experimental results show that T-Cache performs much better for the repetitive pattern in terms of disk I/Os and the elapsed time. Even with the sequential pattern, T-Cache shows almost the same performance as a system that does not use any caching, indicating the caching overhead in T-Cache is negligible.

A design of low power structures of texture caches for mobile 3D graphics accelerator (모바일 3D 그래픽 가속기를 위한 저전력 텍스쳐 캐쉬 구조 설계)

  • Kim, Young-Sik;Lee, Jae-Young
    • Journal of Korea Game Society
    • /
    • v.6 no.4
    • /
    • pp.63-70
    • /
    • 2006
  • This paper studied various low power structures of texture caches for mobile 3D graphics accelerator to reduce the memory latency of texture data. Also the paper designed the texture cache with the variable threshold values of power mode transition according to the filtering algorithms. In the trace driven simulation, we compared the performance of those structures using Quake game engine as the benchmark. Also the algorithm was proposed and verified by the simulation, which has variable threshold values of power mode transitions according to the selected texture filtering method.

  • PDF

Performance Analyses of Instruction Fetch Models Considering Cache Miss and Branch Misprediction (캐쉬 미스와 분기예측 실패를 고려한 명령어 페치 모델의 성능분석)

  • Kim, Seon-Mo;Jeong, Jin-Ha;Choe, Sang-Bang
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.28 no.12
    • /
    • pp.685-697
    • /
    • 2001
  • Cache memories are small fast memories used to temporarily hold the contents of main memory that are likely to be referenced by processors so as to reduce instruction and data access time. In this paper, we represent analytical models of instruction fetch process for four types of instruction cache structures that can be used for superscalar processors. In the models, we define various kinds of architectural parameters and take cache miss and branch misprediction into consideration. To prove the correctness of the proposed models, we performed extensive simulations and compared the results with the analytical models. Simulation results showed that the proposed model can estimate the instruction fetch rate accurately within 10% error in most cases. Both analytical model and simulation show that the increase of cache misses reduces the instruction fetch rate more severely than that of branch misprediction does. However, the analytical model can explain the causes of performance degradation which cannot be uncovered by the simulation method only. The model is also able to provide exact relationship between cache miss and branch misprediction for instruction fetch analysis.

  • PDF

Compact Field Remapping for Dynamically Allocated Structures (동적으로 할당된 구조체를 위한 압축된 필드 재배치)

  • Kim, Jeong-Eun;Han, Hwan-Soo
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.10
    • /
    • pp.1003-1012
    • /
    • 2005
  • The most significant difference of embedded systems from general purpose systems is that embedded systems are allowed to use only limited resources including battery and memory. Especially, the number of applications increases which deal with multimedia data. In those systems with high data computations, the delay of memory access is one of the major bottlenecks hurting the system performance. As a result, many researchers have investigated various techniques to reduce the memory access cost. Most programs generally have locality in memory references. Temporal locality of references means that a resource accessed at one point will be used again in the near future. Spatial locality of references is that likelihood of using a resource gets higher if resources near it were just accessed. The latest embedded processors usually adapt cache memory to exploit these two types of localities. Processors access faster cache memory than off-chip memory, reducing the latency. In this paper we will propose the enhanced dynamic allocation technique for structure-type data in order to eliminate unused memory space and to reduce both the cache miss rate and the application execution time. The proposed approach aggregates fields from multiple records dynamically allocated and consecutively remaps them on the memory space. Experiments on Olden benchmarks show $13.9\%$ L1 cache miss rate drop and $15.9\%$ L2 cache miss drop on average, compared to the previously proposed techniques. We also find execution time reduced by $10.9\%$ on average, compared to the previous work.

Web-Based Distributed Visualization System for Large Scale Geographic Data (대용량 지형 데이터를 위한 웹 기반 분산 가시화 시스템)

  • Hwang, Gyu-Hyun;Yun, Seong-Min;Park, Sang-Hun
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.6
    • /
    • pp.835-848
    • /
    • 2011
  • In this paper, we propose a client server based distributed/parallel system to effectively visualize huge geographic data. The system consists of a web-based client GUI program and a distributed/parallel server program which runs on multiple PC clusters. To make the client program run on mobile devices as well as PCs, the graphical user interface has been designed by using JOGL, the java-based OpenGL graphics library, and sending the information about current available memory space and maximum display resolution the server can minimize the amount of tasks. PC clusters used to play the role of the server access requested geographic data from distributed disks, and properly re-sample them, then send the results back to the client. To minimize the latency happened in repeatedly access the distributed stored geography data, cache data structures have been maintained in both every nodes of the server and the client.