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Abstract Intelligent pipeline inspection gauges (PIGs) are inspection vehicles that move along
within a (gas or oil) pipeline and acquire signals (also called sensor data) from their surrounding rings
of sensors. By analyzing the signals captured in intelligent PIGs, we can detect pipeline defects, such
as holes and curvatures and other potential causes of gas explosions. There are two major data access
patterns apparent when an analyzer accesses the pipeline signal data. The first is a sequential pattern
where an analyst reads the sensor data one time only in a sequential fashion. The second is the
repetitive pattern where an analyzer repeatedly reads the signal data within a fixed range; this is the
dominant pattern in analyzing the signal data. The existing PIG software reads signal data directly
from the server at every user's request, requiring network transfer and disk access cost. It works well
only for the sequential pattern, but not for the more dominant repetitive pattern. This problem becomes
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very serious in a client/server environment where several analysts analyze the signal data
concurrently. To tackle this problem, we devise a fast in-memory cache manager, called T-Cache, by
considering pipeline sensor data as multiple time-series data and by efficiently caching the time-series
data at T-Cache. To the best of the authors’ knowledge, this is the first research on caching pipeline
signals on the client-side. We propose a new concept of the signal cache line as a caching unit, which
is a set of time-series signal data for a fixed distance. We also provide the various data structures
including smart cursors and algorithms used in T-Cache. Experimental results show that T-Cache
performs much better for the repetitive pattern in terms of disk I/Os and the elapsed time. Even with
the sequential pattern, T-Cache shows almost the same performance as a system that does not use

any caching, indicating the caching overhead in T-Cache is negligible.

Key words

1. Introduction

Several million kilometers of oil and gas pipelines
have been installed underground throughout the
world [1], and around 30,000 to 40,000 kilometers of
new pipelines are added every year. Pipelines may
span over several thousands of kilometers [2] and
may wear out due to heat, gas pressure or just
poor installation.

Several techniques [3] have been used in the past
to inspect long pipelines. Among the techniques, the
intelligent PIG (pipe inspection gauge) [4] is used
by many major pipeline inspection companies [4-7].
A PIG is equipped with more than one hundred
sensors which are installed on the circumference of
the PIG. The PIG collects the sensor data which is
then evaluated after the inspection using special
analyzer software. Figure 1 shows an intelligent
PIG.

We notice that there exist two major patterns
when an analyst accesses the pipeline signal data.
One is a sequential pattern where an analyst reads
sensor data sequentially only once. The other pat-
tern is a repetitive pattern where an analyzer reads
the signal data in a fixed range repeatedly, which
is a dominant pattern in analyzing the signal data.

This frequently happens whenever an analyst sees

Figure 1 An intelligent PIG [8]

Caching, Time series data, Intelligent PIG

Figure 2 A screenshot of our analyzer software

doubtful signal data and must repeat a sequence
for further analysis. Figure 2 shows a screenshot
of our analyzer software.

Regardless of which pattern is used, all the major
PIG analyzer software reads signal data directly
from the server at the user’s request, which only
works well for a sequential pattern. Retrieving a
repetitive pattern can causes delays for the analyst.
We note that the OS-level caching does not help
improve system performance in the client/server
environment where several analysts analyze the
signal data concurrently. In this paper, we solve
this problem by exploiting the client-side caching
technique of object-oriented databases. We propose
a fast cache manager, called T-Cache, by consi-
dering pipeline sensor data as multiple time-series
data and by caching efficiently the time-series data
at T-Cache.

Our contributions are summarized as follows: 1)
we propose a new notion of the time-series cache

line and regard the cache line as a fetch unit and
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as a caching unit. To the best of the authors’
knowledge, this is the first work caching pipeline
signals on the client-side. 2) We propose detailed
data structures and algorithms used in T-Cache. 3)
Experimental results show that T-Cache performs
much better for the repetitive pattern in terms of
server calls and the elapsed time. Results show
caching overhead in T-Cache is negligible. Even
with the sequential pattern, T-Cache shows nearly
the same performance as a system that does not
use any caching.

The rest of this paper is organized as follows.
Section 2 describes existing work related to data
analysis software. Section 3 presents the architec—
ture and detailed data structures of T-Cache.
Section 4 presents the results of performance eva-
luation. Section 5 concludes the paper.

2. Related Work

There are several major commercial PIG equip-
ment companies including BJ Pipeline Inspection
Services [4], PII (Pipeline Integration International)
[9] and 3P Service [10]. By far the most popular
analyzer software used in the industry today is
GEODENT {4,6], Vectra view [5] and Lina view {7].

Currently, no companies have opened their deta—
iled techniques or source code for the PIG analyzer
software. However, by reading some fixed sized
data repetitively, we can easily conjecture whether
they use a caching technique.

Our finding is that the performance of reading
fixed size signal data for the first time is the same
as reading data repetitively. This indicates that the
existing analyzer software does not use caching
techniques and instead reads signal data directly
from the server per the user’s request. In a client/
server environment, the OS-level caching does not
help to improve the system performance.

In object-oriented databases, object caching tech-
niges [11,12] are used on the client side. Similar to
our approach, their methods also maintain several
hash tables to keep track of objects in cache. They
cache once read objects as often as they can.
However, their caching and fetch unit is an object,
and thus, we can not directly use the object cache

for our environment. This is because we need to

access signal data fast in a bulk fashion.

In reference {13], we introduce the overall descrip-
tion for a scalable pipeline data processing frame-
work. In this paper, we focus on efficient caching

mechanisms for the framework.

3. T-Cache

In this section, we first introduce the overall
architecture of our analyzer software in Section 3.1,
and explain implementation issues including detailed
data structures and algorithms in Section 3.2.

3.1 Overall Architecture

Our analyzer software consists of the two compo-
nents, namely the data manager and the visualizer.
The data manager parses and stores raw pipeline
data into a time-series store, and provides fast
access to the time-series store using T-Cache. As
for time-series storage, we can use either our
specialized time-series store or a commercial relatio—
nal DBMS. The visualizer allows users to visu-
alize the sensor data with various views such as
fisheye, histogram and wave views. We do not
discuss the details of the visualization module,
which is beyond our scope. Figure 3 shows the
system architecture of our analyzer software.

The data manager consists of the following mo-~
dules: 1) cleanser, 2) loader, 3) time-series chunk
reader, and 4) time-series cache (T-Cache). After
we acquire data from a PIG, we first clean raw
signal data by removing some erroneous data. For
this purpose, our cleanser progressively reads raw
signal data and corrects errors based on the clea—-
nsing rules. We then load raw signal data cleaned
to a time-series database. For initial loading, we do
bulk loading. After that, the visualizer can access
the time-series signal data by accessing T-Cache,
which is in charge of caching part of the whole
time-series data. Whenever data requested is not
found in T-Cache, we read the data from disk
using time-series chunk reader. As the name of the
module indicates, it reads chunks of time-series
data for fast performance. The chunk reader can be
implemented using either a proprietary module or a
relational DBMS. However, we prefer to use our
specialized module since it provides an order of
magnitude faster access than commercial RDBMS.
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Figure 3 Overall system architecture of our ana-

lyzer software

3.2 implementation of T-Cache

Before we discuss implementation details of T-—
Cache, we first formally define the time-series
cache line as the following:

Definition 1 The time-series cache line is a list
of signal segments for a fixed in a list of signal
segments for a fixed interval. A signal segment
consists of signal time-series data for a specific
sensor. The time-series cache line is used as a
fetch unit and as a replacement unit.

Figure 4 shows the structure of the time-series
cache line. Here, the header contains the starting
and ending distance of the data in the time-series
cache line.

Although users request specific signal data for a
certain distance, T-Cache retrieves corresponding
time-series cache line from the server as a chunk
and returns a pointer to the specific signal data.
Doing this allows us to provide users fine level
access to data without sacrificing performance.

The smart cursor is provided for transparent
access to time-series data either on cache or on
the server. By using the smart cursor, users need
not to care whether data pointed to by a smart
cursor is in the cache or not. If the data requested
exists in the cache, the physical pointer in the
smart cursor can immediately access the data in
the cache. Otherwise, T-Cache loads the relevant

time-series cache line containing the data requested

to the cache and makes the smart cursor point to
the data in the cache.

To facilitate replacement of time-series cache
lines, we use a concept of the {\it resident segment
descriptor) (RSD), which points to a segment in a
time-series cache line. Smart cursors can point to
only RSDs, not directly to a signal segment. This
enables us to replace signal segments from the
cache at any time by invalidating pointers in RSDs.
Although our current implementation replaces all
segments in a time-series cache line, theoretically,
only some signal segments in a time-series cache
can be replaced out. Figure 5 shows the relation-
ship of the smart cursors and the RSD.

\
~7
RSDPool | RSD | | | [

Time-series Cache Line

[T
[ ‘ ]

Figure 5 Relationship between smart cursors and
RSDs

When we first load a time-series cache line from
the server, we need to remember a pair of values
for the starting distance of the cache line and the
physical address of the time-series cache line in
the cache. For this purpose, T-Cache maintains an
in—-memory hash table called the cache line table.
When users want to access a cache line from
cache, we first look up the cache line table without
blindly calling the server.

T-Cache also maintains an additional in-memory
hash table called the reverse cache line table. Here,
keys in the hash table are pointers to cache lines,

and values in the hash table are pointers to RSDs.
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Figure 4 Time-series cache line
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When we replace a cache line, we need to invali—
date all the RSDs pointing to the cache line. This
hash table accelerates to find those RSDs.

We note that we use red black trees [14] for the
two in-memory hash tables. Red black trees pro-~
vide the best possible guarantees for various worst
case operations.

Example 1 Figure 6 shows various data struc—
tures used in T-Cache. As you see here, a smart
cursor points to a RSD r; that in turn points to a
time-series cache line #;, the cache line table stores
the pair of addresses, the starting address and
in—memory address of t;, and the reverse cache line
table stores a pair of ¢ and ri.
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Figure 6 Various data structures used in T-Cache

4. Performance Evaluations

In this section we test our proposed approach with
a comprehensive set of experiments. We describe the
setup for the experiments in Section 4.1 and present
the results of the experiments in Section 4.2.

4.1 Experimental setup

We use real data that an intelligent PIG collected

from the pipeline spanning from Haechon to Daemi
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(about 45 kilometers long). The size of the data is
about 35 Gbytes. All the experiments are done on
Windows Server 2003 with Pentium3 851 MHz PC.

Table 1 shows parameters used in the experi-
ments. We use both sequential and repetitive pat-
terns. The sizes of the repetitive patterns are 300~
2100 m with incremental increase of 300 m. We
also varied the size of the cache, 0~Mbytes, 25~
Mbytes, 50~Mbytes and 100~Mbytes. As a refer-
ence, 500 m of pipeline data is approximately 25
Mbytes.

Table 1 Parameters used in the experiments

type value

pattern

sequential, repetitive
300, 600, 900, -+, 2100 m
0 (= no cache), 25, 50, 100 Mbytes

repeating distance

cache size

4.2 Performance Evaluations

For the repetitive pattern, the performance of T~
Cache is strongly affected by the physical distance
being repeated and the size of cache. Figure 7
shows the results of performance for the repetitive
pattern as we vary the physical distance being
repeated and the size of cache. With the cache size
being 25 Mhbytes, we can store 500 meters worth
of pipeline data. Thus, with a cache size larger
than the size of the data accessed repetitively, the
number of times the server is called is not changed
regardless of how many times we repeat the data.
However, if the size of the data being repeated
exceeds the size of the cache, the performance
degrades gracefully. Compared with the RDBMS-
based repository, T-Cache provides by up to 319

+0 25 #50 +100

2
<3

[T 3
[=1
8 8

/

200

A
b tl———

-
[
(=)

£ 2 . L n L A 1 L

1200 2100 3000

w

300

repetitive distance (m)

Figure 7 Experimental results for the repetitive pattern
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times speedup.

Regarding the sequential pattern, any caching
technique can not enhance performance, but degrade
performance due to caching overhead. With robust
data structures and algorithms for T-Cache, how-
ever, very little overhead is caused, even for the
sequential pattern.

Figure 8 shows experimental results of the sequ-
ential pattern when the cache size is 100 Mbytes.
As we expect, the number of times the server is
called is the same regardless if we use caching or
not. Regarding the elapsed time, T-Cache is almost
the same as for the system that does not use any
caching. This shows our caching maintenance over-
head is almost negligible.

We can conclude that T-Cache is robust and
effective for both sequential and repetitive patterns.
T-Cache performs much better especially for the
repetitive pattern type. In our experiment, we do
not consider the communication cost in a client/
server environment. However, in a client/server envi-
ronment, effective caching using T-Cache can fur-
ther reduce communication cost.

5. Conclusions

In this paper, we proposed a fast cache manager,
called T-Cache, by considering pipeline sensor data
as multiple time-series data and by efficiently
caching the time-series data using T-Cache. Unlike
the conventional PIG analyzer software, we use
T-Cache to efficiently cache data, which allows us
to avoids reading signal data directly from the
server for each user’'s request. We also provided
detailed data structures and algorithms used for
T-Cache. Experimental results showed that T-Cache
performs much better for the repetitive pattern in
terms of the server calls and the elapsed time.

Even with the sequential pattern, T-Cache shows
almost the same performance as a system that does
not support time-series data caching, indicating
caching overhead in T-Cache is negligible.
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