• Title/Summary/Keyword: Cable damage

Search Result 210, Processing Time 0.029 seconds

Cable Effect Analysis Inside an Electrically Large Structure from an External Electromagnetic Waves (전자파에 의한 대형구조물 내부 케이블 영향 해석)

  • Lee, Jae-Min;Yoon, Seong-Sik;Lee, Jae-Wook;Han, Jung-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.2
    • /
    • pp.155-158
    • /
    • 2017
  • With the help of technical development in the electronic industries, the electronic devices employing the cutting-edged technology are spread in all the area requiring electromagnetic communications. Especially, because of the presence of electronic devices in a variety of research fields like automotive vehicle, train, and aircraft, the research area such as the malfunction and critical damage of the internal system and microwave devices due to the unexpected radiated high-powered EM effects are very important even for the possible occurrence of human damage. In this paper, the effects of electromagnetic fields into the cable connecting the electronic devices and many sensors inside the target structure is treated because of potential malfunction or hardware disorders. In addition, correlation function and transmission line theory have been employed for the analysis of the induced current on the cable inside an electrically large resonant structure.

Mathematical Modeling and Analysis for Water_Tree of Underground Cables (지중 케이블의 수트리에 대한 수학적 모델링 및 분석)

  • Lee, Jung-Woo;Oh, Yong-Taek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.516-522
    • /
    • 2020
  • Water trees can cause considerable damage to the performance of underground cables. Theymay formwithin the dielectric used in buried or water-immersed high voltage cables. They grow in a bush-like or tree-like form, often taking decades before causing damage to a cable's performance. They are usually found on very old underground cables, often in an inaccessible place. It is costly and time-consuming to detect watertrees in underground cables. Tree detection technology, including mathematical modeling,can reduce the maintenance cost and time necessary for detecting these trees.To simulate detection of water trees in this study, a mathematical model ofan XLPE cable and a water tree were developed. The complex water tree structure was simplified, based on two identified patterns of aventedtree. A Matlab simulation was performed to calculate and analyze the capacitance and resistance of a cable insulation layer,based on growth of a watertree. Capacitance size increased about 0.025×10-13[Farads/mm] compared to normal when the tree area of the cable was advanced to 95% of the insulation layer. The resistance value decreased by about 0.5×1016[ohm/m]. These changesand changesshowninaBurkes paper physical modeling simulation are similar.The value of mathematical modeling for detecting water trees and damage to underground cables has been demonstrated.

Analysis of HEMP Coupling Signal for a Coaxial Cable with Braided Shields (Braided Shield를 가진 동축 케이블의 HEMP 결합 신호 해석)

  • Lee, Jin-Ho;Cho, Jea-Hoon;Kim, Eung-Jo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.8
    • /
    • pp.790-796
    • /
    • 2011
  • The system which is exposed in the impact range of High-altitude Electromagnetic Pulse(HEMP) may get serious damage because HEMP has a very large electric field value, a very fast rise-time, and so on. Electromagnetic analysis should be performed for signals coupled to the opening or cables of the system prior to derive the system design specifications in order to protect the system against HEMP adequately. In this paper, we analyzed the HEMP coupled signals for the coaxial cable which is generally used to transmit and receive video or RF signals and compared the coupled signal of the one wire with that of the inner conductor of a coaxial cable to confirm the decreased effect of HEMP by the shield. The coaxial cable is analyzed by the external and internal region of the shield separately. For the external region of the coaxial cable, general scattered equation was applied to calculate currents on the surface of the shield and for internal region of the coaxial cable, chain matrix algorithm is used. To verify this paper the analyzed results were compared the results of the existing paper and the two results have good agreements.

Characteristics of Radiated Electromagnetic Wave and Partial Discharge in Power XLPE Cable (전력용 XLPE Cable의 부분방전과 방사전자파 특성)

  • Lee, Kwang-Sik;Lee, Hyun-Chul;Park, Kwang-Seo;Yoon, Dae-Hee;Lee, Sang-Hun;Kim, Jong-Hwan;Kim, Chung-Nyun;Kim, Ki-Chai
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.90-95
    • /
    • 2004
  • This paper simulated partial discharge caused by 22.9[kV] power cable using XLPE(Peroxide Crosslinkable Polyethylene) insulation having the outside damage. As one of the insulation diagnostic method a radiated electromagnetic waves were measured by an UHF method using a BiconiLog antenna(EMCO-3142) and a spectrum analyzer used to measure EMI, EMC. From results of this study, It was confirmed that discharge Ogress were possible to be estimated by the proposed method.

The Real-time Health Monitoring System of a Cable-stayed Bridge Based on Non-destruction Measurement (비파괴계측에 의한 사장교의 공용간 상시안전감시시스템)

  • Choi, Man-Yong;Kang, Kyung-Koo;Kim, Jong-Woo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.3
    • /
    • pp.239-245
    • /
    • 2002
  • Many civil and infrastructures continue to be used despite aging and the associated potential for damage accumulation. Therefore, the ability to monitor the health of these systems is becoming increasingly important. The purpose of this paper is to propose a real-time health monitoring system of cable-stayed bridge, based-on non-destructive measurement. And also this paper focuses on the safety assessment for bridge from health monitoring system to accomplish this safety assesment. Using the proposed health monitoring system, it helps bridge maintenance and reduces the economic cost of a life-cycle costs. Also it give important data to develop the design and analysis method for cable-stayed bridges.

Numerical Simulation of Arch-type Submarine Cable Protector under Anchor Collision (아치형 해저 케이블 보호 구조물의 앵커 충돌 수치 시뮬레이션)

  • Woo, Jin-Ho;Na, Won-Bae;Kim, Heon-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.96-103
    • /
    • 2009
  • In 2006, Jeju Island in South Korea experienced a crisis, no electricity for three hours anywhere in the entire island. This incident was caused by a domino effect that occurred after one of the submarine power cables connecting the island to Haenam, a coastal city on the mainland, was damaged by an external load, probably from a ship anchor or a steel pile being used in marine farming. This study presents a collision analysis of a new submarine power cable protector called arch type reinforced concrete. For the analysis, a dynamic finite element program, ANSYS AUTODYN, was used to examine the displacement and stress of the submarine power cable protector using different material models (RHT concrete model, Mohr.Coulomb concrete model). In addition, two reinforcing bar spacings, 75 mm and 150 mm, were considered. From the analyses, the effects of the parameters (concrete model and spacing) on the results (displacement and stress) were analyzed, and the relations between the damage and parameters were found.

Compound damping cable system for vibration control of high-rise structures

  • Yu, Jianda;Feng, Zhouquan;Zhang, Xiangqi;Sun, Hongxin;Peng, Jian
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.641-652
    • /
    • 2022
  • High-rise structures prone to large vibrations under the action of strong winds, resulting in fatigue damage of the structural components and the foundation. A novel compound damping cable system (CDCS) is proposed to suppress the excessive vibrations. CDCS uses tailored double cable system with increased tensile stiffness as the connecting device, and makes use of the relative motion between the high-rise structure and the ground to drive the damper to move back-and-forth, dissipating the vibration mechanical energy of the high-rise structure so as to decaying the excessive vibration. Firstly, a third-order differential equation for the free vibration of high-rise structure with CDCS is established, and its closed form solution is obtained by the root formulas of cubic equation (Shengjin's formulas). Secondly, the analytical solution is validated by a laboratory model experiment. Thirdly, parametric analysis is conducted to investigate how the parameters affect the vibration control performance. Finally, the dynamic responses of the high-rise structure with CDCS under harmonic and stochastic excitations are calculated and its vibration mitigation performance is further evaluated. The results show that the CDCS can provide a large equivalent additional damping ratio for the vibrating structures, thus suppressing the excessive vibration effectively. It is anticipated that the CDCS can be used as a good alternative energy dissipation system for vibration control of high-rise structures.

A Study on HVDC Underwater Cable Monitoring Technology Based on Distributed Fiber Optic Acoustic Sensors (분포형 광섬유 음향 센서 기반 HVDC 해저케이블 모니터링 기술 연구)

  • Youngkuk Choi;Hyoyoung Jung;Huioon Kim;Myoung Jin Kim;Hee-Woon Kang;Young Ho Kim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.199-206
    • /
    • 2023
  • This study presents a novel monitoring technique for underwater high-voltage direct current (HVDC) cables based on the Distributed Acoustic Sensor (DAS). The proposed technique utilizes vibration and acoustic signals generated on HVDC cables to monitor their condition and detect events such as earthquakes, shipments, tidal currents, and construction activities. To implement the monitoring system, a DAS based on phase-sensitive optical time-domain reflectometry (Φ-OTDR) system was designed, fabricated, and validated for performance. For the HVDC cable monitoring experiments, a testbed was constructed on land, mimicking the cable burial method and protective equipment used underwater. Defined various scenarios that could cause cable damage and conducted experiments accordingly. The developed DAS system achieved a maximum measurement distance of 50 km, a distance measurement interval of 2 m, and a measurement repetition rate of 1 kHz. Extensive experiments conducted on HVDC cables and protective facilities demonstrated the practical potential of the DAS system for monitoring underwater and underground areas.

Design of Submarine Cable for Capacity Extension of Power Line (전력선 용량증대를 위한 해저케이블 설계)

  • Son, Hong-Chul;Moon, Chae-Joo;Kim, Dong-Sub
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.77-84
    • /
    • 2022
  • A submarine power cable is a transmission cable for carrying electric power below the surface of the water. Recently, submarine cables transfer power from offshore renewable energy schemes to shore, e.g. wind, wave and tidal systems, and these cables are either buried in the seabed or lie on the ocean floor, depending on their location. Since these power cables are used in the extreme environments, they are made to withstand in harsh conditions and temperatures, and strong currents. However, undersea conditions are severe enough to cause all sorts of damage to offshore cables, these conditions result in cable faults that disrupt power transmission. In this paper, we explore the design criteria for such cables and the procedures and challenges of installation, and cable transfer splicing system. The specification of submarine cable designed with 3 circuits of 154kV which is composed of the existing single circuit and new double circuits, and power capacity of 100MVA per cable line. The determination of new submarine cable burial depth and cable arrangement method with both existing and new cables are studied. We have calculated the permission values of cable power capacity for underground route, the values show the over 100MW per cable line.

Structural Behavior Evaluation of a Cable-Stayed Bridge Subjected to Aircraft Impact: A Numerical Study (항공기 충돌에 대한 사장교의 구조거동 평가: 수치해석적 접근)

  • Choi, Keunki;Lee, Jungwhee;Chung, Chul-Hun;An, Dongwoo;Yoon, Jaeyong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.3
    • /
    • pp.137-149
    • /
    • 2021
  • Cable-stayed bridges are infrastructure facilities of a highly public nature; therefore, it is essential to ensure operational safety and prompt response in the event of a collapse or damage caused by natural and social disasters. Among social disasters, impact accidents can occur in bridges when a vehicle collides with a pier or when crashes occur due to aircraft defects. In the case of offshore bridges, ship collisions will occur at the bottom of the pylon. In this research, a procedure to evaluate the structural behavior of a cable-stayed bridge for aircraft impact is suggested based on a numerical analysis approach, and the feasibility of the procedure is demonstrated by performing an example assessment. The suggested procedure includes 1) setting up suitable aircraft impact hazard scenarios, 2) structural modeling considering the complex behavior mechanisms of cable-stayed bridges, and 3) structural behavior evaluation of cable-stayed bridges using numerical impact simulation. It was observed that the scenario set in this study did not significantly affect the target bridge. However, if impact analysis is performed through various scenarios in the future, the load position and critical load level to cause serious damage to the bridge could be identified. The scenario-based assessment process employed in this study is expected to facilitate the evaluation of bridge structures under aircraft impact in both existing bridges and future designs.