• Title/Summary/Keyword: Cable Impedance

Search Result 132, Processing Time 0.026 seconds

Evaluation of Distance Relay Operation Characteristic with the Reduction Devices Installed in Underground Power Cable Systems (시스순환전류 저감장치 설치시 거리계전기 응동 특성 평가)

  • Jung, Chae-Kyun;Lee, Jong-Beom;Kang, Ji-Won
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.494-496
    • /
    • 2003
  • This paper analyses the operation characteristic of distance relay when the single line to ground occurs in underground power cable systems that reduction device of sheath circulating current is installed. To apply that reduction device to actual system, the change of line impedance calculated at relay point is also analysed by the connection type of SVLs and fault location, fault inception angle with the installation of reduction device of reactor or not.

  • PDF

Design and Fabrication of a PD Detector for Power Cable Diagnosis (전력케이블 진단을 위한 부분방전 검출장치의 설계 및 제작)

  • Song Jae-Yong;Seo Hwang-Dong;Kil Gyung-Suk;Han Moon-Soeb;Jang Dong-Uk
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.777-782
    • /
    • 2005
  • In this paper, we designed and fabricated a partial discharge (PD) detector to diagnose the soundness of CNCV cables by analyzing PD pulses and to predict discharge locations. The PD detector is consisted of a coupling network with a discharge free capacitor and a detection impedance, a voltage follower and a low noise amplifier. Lower cut-off frequency of the detector is adjusted at 175kHz to block AC voltage and to pass discharge pulse only. The discharge location could be obtained by the time of arrival method using travelling wave propagation theory. In a laboratory test on an eighty meter CV cable, we could position the discharge location within a two meter error.

  • PDF

Instantaneous Frequency Estimation of the Gaussian Enveloped Linear Chirp Signal for Localizing the Faults of the Instrumental Cable in Nuclear Power Plant (가우시안 포락선 선형 첩 신호의 순시 주파수 추정을 통한 원전 내 계측 케이블의 고장점 진단 연구)

  • Lee, Chun Ku;Park, Jin Bae;Yoon, Tae Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.987-993
    • /
    • 2013
  • Integrity of the control and instrumental cables in nuclear power plant is important to maintain the stability of the nuclear power plants. In order to diagnose the integrity of the cables, the diagnostic methods based on reflectometry have been studied. The reflectometry is a non-destructive method and it is applicable to diagnose the live cables. We introduce a Gaussian enveloped linear chirp reflectometry to diagnose the cables in the nuclear power plants. In this paper, we estimate the instantaneous frequency of the Gaussian enveloped linear chirp signal by using the weighted robust least squares filtering to localize the impedance discontinuities in the class 1E instrumental cable.

Design of a composite diagnostic DC test apparatus for high voltage power cable (고압전력케이블 현장진단시험용 종합 직류시험설비의 검토)

  • Ryoo, Hee-Suk;Kang, Dong-Sik;Sim, Jong-Tae;Lee, Ho-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2326-2328
    • /
    • 1999
  • Developments of effective and economic diagnostic apparatus for industrial plastic insulated high voltage power cables are in discontented condition still. Some report told that DC high voltage was damaged plastic insulation of a partially aged power cable to lead breakdown easily. But now, we have no alternative tools of DC diagnostic apparatus, and we try to reduce a possibility of hazard DC diagnosis. DC diagnostic apparatus still have many advantages to field cable engineer like low price, portability easy applications and sufficient data. Main hazard of DC diagnosis is excessive hight of applied voltage Recent developments for DC diagnosis use considerably low voltage. But new test methods need special measuring device and manipulator, like high input impedance voltmeter, low leakage current high voltage switches, etc. So that reason, new DC diagnostic devices are normally very expensive and have low efficiency, economically. We try to design a composite test device for 3$\sim$4 newly developed method, have economical benefit th industrial engineer.

  • PDF

A fault current analysis and parallel FCL scheme on superconducting new power system (초전도(신)전력계통 고장전류 분석 및 병렬한류시스템)

  • Yoon, Jae-Young;Lee, Seung-Ryul;Kim, Jong-Yul
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.1
    • /
    • pp.49-53
    • /
    • 2006
  • This paper specifies the new power supply paradigm converting 154kV voltage level into 22.9kV class with equivalent capacity using superconducting rower facilities and analyze the fault current characteristics with and without HTS-FCL (High Temperature Superconducting-Fault Current Limiter). Superconducting new power system is the power system to which applies the 22.9kV HTS cable in parallel to HTS transformer and HTS-FCL with low-voltage and mass-capacity characteristics replacing 154kV conventional cable and transformer. The fault current of superconducting new power system will increase greatly because of the mass capacity and low impedance of HTS transformer and cable. This means that the HTS-FCL is necessary to reduce the fault current below the breaking current of circuit breaker. This paper analyze the fault current and suggests the parallel HTS-FCL scheme complementing the inherent problem of HTS-FCL, that is recovery after quenching is impossible within shorter than a few seconds.

Development of Retinal Prosthesis Module for Fully Implantable Retinal Prosthesis (완전삽입형 인공망막 구현을 위한 인공망막모듈 개발)

  • Lee, Kang-Wook;Kaiho, Yoshiyuki;Fukushima, Takafumi;Tanaka, Tetsu;Koyanagi, Mitsumasa
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.4
    • /
    • pp.292-301
    • /
    • 2010
  • To restore visual sensation of blind patients, we have proposed a fully implantable retinal prosthesis comprising an three dimensionally (3D) stacked retinal chip for transforming optical signal to electrical signal, a flexible cable with stimulus electrode array for stimulating retina cells, and coupling coils for power transmission. The 3D stacked retinal chip is consisted of several LSI chips such as photodetector, signal processing circuit, and stimulus current generator. They are vertically stacked and electrically connected using 3D integration technology. Our retinal prosthesis has a small size and lightweight with high resolution, therefore it could increase the patients` quality of life (QOL). For realizing the fully implantable retinal prosthesis, we developed a retinal prosthesis module comprising a retinal prosthesis chip and a flexible cable with stimulus electrode array for generating optimal stimulus current. In this study, we used a 2D retinal chip as a prototype retinal prosthesis chip. We fabricated the polymide-based flexible cable of $20{\mu}m$ thickness where 16 channels Pt stimulus electrode array was formed in the cable. Pt electrode has an impedance of $9.9k{\Omega}$ at 400Hz frequency. The retinal prosthesis chip was mounted on the flexible cable by an epoxy and electrically connected by Au wire. The retinal prosthesis chip was cappted by a silicone to pretect from corrosive environments in an eyeball. Then, the fabricated retinal prosthesis module was implanted into an eyeball of a rabbit. We successfully recorded electrically evoked potential (EEP) elicited from the rabbit brain by the current stimulation supplied from the implanted retinal prosthesis module. EEP amplitude was increased linearly with illumination intensity and irradiation time of incident light. The retinal prosthesis chip was well functioned after implanting into the eyeball of the rabbit.

New bootstrapping circuit and transmission line modeling for bioimpedance measurement (생체임피던스 측정을 위한 새로운 부트스트래핑 회로와 전송선로 모델링)

  • Kim, Young-Feel;Kwoon, Suck-Young;Hwang, In-Duk
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.179-182
    • /
    • 2003
  • A simulation on bootstrapping circuit has been performed by modelling a coaxial cable as a transmission line. It is shown that the bootstrapping circuit could be unstable due to the transmission line effect though an ideal amplifier is used. While the conventional bootstrapping circuit does not cancel the input capacitance of the input buffer, a new bootstrapping circuit that cancels input capacitance of the input buffer has been proposed. The proposed bootstrapping circuit consists of the input buffer of which gam is larger than 1 and a feedback resistor to control the loop gain. The proposed bootstrapping circuit has higher input impedance than that of the conventional circuit.

  • PDF

Aperture-Coupled Wideband U-slot Microstrip Patch Antenna at Ku Band (개구 결합 급전 방식의 Ku 밴드 U 슬롯 마이크로스트립 안테나 설계 및 제작)

  • 유명완;이범선
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.4
    • /
    • pp.636-644
    • /
    • 1999
  • Experimental and simulation results are presented on the Aperture-Coupled microstrip patch antennal with U-shaped slot. Experiment and simulation results include impedance bandwidth, copolar and crosspolar-pattern characteristics and gain measurements. Simulation results show the advantages of U-slotted patch antenna comparing with the normal patch antenna. More than 35% impedance bandwidth is obtained with reasonably restricted cross-polar radiation pattern. The U-slotted radiation element fed by aperture-coupling method can be more easily extended to array structure, compared with that fed by coaxial cable.

  • PDF

Fault Location using Neuro-Fuzzy in Combined Transmission Lines with Underground Power Cables (뉴로-퍼지를 이용한 혼합송전계통에서의 고장점 추정)

  • Kim, Kyoung-Ho;Lee, Jong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.319-322
    • /
    • 2002
  • Distance relay is operated in calculating line impedance. It can be worked accurately in overhead line. However, power cables or combined transmission lines need compensation for calculated impedance because cable systems have sheaths, grounding wires and sheath voltage limiters(SVLs) Neuro-fuzzy can be viewed either as a fuzay system, a neural network or fuzzy neural network and it can estimate the location of the fault accurately. In this paper, fault section and fault location can be classified and estimated in neuro- fuzzy inference system and neural network.

  • PDF

Simulation for characterization of high speed probe for measurement of single flux quantum circuits (단자속양자 회로 측정프로브의 특성 분석을 위한 시뮬레이션)

  • 김상문;김영환;최종현;조운조;윤기현
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.2
    • /
    • pp.11-15
    • /
    • 2002
  • High speed probe for measurement of sin91e flux quantum circuits is comprised of coaxial cables and microstrip lines in order to carry high speed signals without loss. For the impedance matching between coaxial cable and microstrip line, we have determined the dimension of the microstrip line with 50${\Omega}$ impedance by simulation and then have investigated the effect of line width and cross-sectional shape of signal line, dielectric material, thickness of soldering lead at the coaxial-to-microstrip transition Point, and the an91c between dielectric material and end part of the signal line on the characteristics of signal transmission of the microstrip line. From the simulation, we have found that these all parameter's had influenced on the characteristic of signal transmission on the microstrip line and should be reflected in fabricating high speed probe, We have also determined the dimension of coplanar waveguide to fabricate testing sample for performance test of high speed probe.