• 제목/요약/키워드: Cable Fire

검색결과 140건 처리시간 0.022초

건축물내 통신용 케이블의 화재위험성 분석에 관한 실험연구 (A Experimental Study on the Fire Hazard Analysis For Communication Cable in Buildings)

  • 홍성호;최문수
    • 한국안전학회지
    • /
    • 제26권6호
    • /
    • pp.20-25
    • /
    • 2011
  • This study presents on the fire hazard analysis of communication cable in buildings. In order to analyze fire hazards for communication cable IEC 60332-1, UL 94 and cone calorimeter test are conducted. The number of cable used to experiment is 10 communication cable which are generally applied to data communication in buildings. The results show that 9 cables do meet the performance requirement of IEC 60332-1 and 8 cables are V-0 classification. IEC 60332-1 and UL 94 test are inadequate for fire hazard classification. The various parameters obtained by cone calorimeter test such as HRR, peak HRR, smoke production rate and so on. Also it is able to evaluate multiply fire hazard for communication cable with cone calorimeter test results.

원전 노출 화재시 케이블 기능상실 온도에 관한 연구 (A Study on Cable Functional Failure Temperature by Exposed Fire in Nuclear Power Plants)

  • 김두현;임혁순
    • 한국안전학회지
    • /
    • 제26권5호
    • /
    • pp.41-45
    • /
    • 2011
  • The fire event occurred in fire proof zone often causes serious electrical problems such as shorts, ground faults, or open circuits in nuclear power plants. These would be directed to the loss of safe shutdown capabilities performed by safety related systems and equipments The fire event can treat the basic design principle that safety systems should keep their functions with redundancy and independency. In case of a cable fire, operators can not perform their mission properly and can misjudge the situation because of spurious operation, wrong indication or instrument. These would deteriorate the plant capabilities of safety shutdown and make disastrous conditions. In this paper, the cables of the representative nuclear power plant in korea is selected and the cable functional failure temperature by exposed fire using Cable Response to Live Fire(CAROLFIRE) is studied. It is expected that the results are very useful to know the cable failure temperature by exposed fire. We confirmed the safety and integrity of the cable by exposed fire and those results will use the based data of cable exposed fire characteristics.

케이블 화재의 화염전파 해석을 위한 FDS 모델의 격자민감도 평가 (Assessment of Grid Sensitivity in the FDS Field Model to Simulate the Flame Propagation of an Electric Cable Fire)

  • 김성찬;이성혁
    • 한국안전학회지
    • /
    • 제23권4호
    • /
    • pp.30-35
    • /
    • 2008
  • The present study has been conducted to examine the effect of grid resolution on the predicted results for electric cable fire using pyrolysis model in FDS(Fire Dynamics Simulator, version 5). The grid independent test for different grid resolutions has been performed for a PE coating cable and the grid resolution is defined by the non-dimensional characteristic length of fire and mean grid size. The calculated maximum heat release rate and mean flame spread rate were almost constant for higher grid resolution of 20${\sim}$25 and the computing time for the grid resolution takes approximately 20hours to solve flame propagation with pyrolysis model. The geometrical simplification of a electric cable dose not greatly affect on the maximum heat release rate and flame spread rate and the rectangular approximation of cable shape gives acceptable result comparing with the round cable with stepwise grid.

케이블 관통부의 유기 팽창물을 이용한 밀폐재 내화성 특성 평가 (The Characteristic Evaluation of Fire-Resistance test by Cable Transit For Organic Expansion Sealing material)

  • 임성식;기명석;정혁;소병기;장기훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 Techno-Fair 및 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.198-199
    • /
    • 2007
  • The Cable Transit has an adaptable center hole for accommodating a cable to be passed through the wall(bulkhead/deck). The Cable Transits Sealing System must have important character which seal and protect against fire, smoke, gas, water, etc and consist of natal frame, sealing system and the cable, insulation. In this paper, introduced our cable transit organic expansion sealing material system, fire-resistance test and test result, etc. We carry to fire-resistance test in according to FTP Code Part 3(IMO Res. A. 754(18)) for A-60 class cable transit and the test result for our cable transit sealing system was satisfied.

  • PDF

원전 케이블 화재 열속평가 및 열화 진단방법에 관한 연구 (A Study on Heat-Flux Evaluation for Cable Fire Including Diagnostic Methodology for Degradation in Nuclear Power Plants)

  • 임혁순;김두현
    • 한국안전학회지
    • /
    • 제26권2호
    • /
    • pp.20-25
    • /
    • 2011
  • The fire event occurred in fire proof zone often causes serious electrical problems such as shorts, ground faults, or open circuits in nuclear power plants. These would be directed to the loss of safe shutdown capabilities performed by safety related systems and equipments. The fire event can treat the basic design principle that safety systems should keep their functions with redundancy and independency. In case of a multi-core cable fire, operators can not perform their mission properly and can misjudge the situation because of spurious operation, wrong indication or instrument. These would deteriorate the plant capabilities of safety shutdown and make disastrous conditions. In this paper, the characteristic of cable fire is investigated and the heat-flux evaluation for cable fire is studied. Moreover, a diagnostic methodology for degraded cable in nuclear power plants is presented.

PASCON 케이블 트로프의 화재안전성에 관한 연구 (A Study on Fire Safety of PASCON Cable Trough)

  • 이창우;박재성;최충석;이의평;윤명오
    • 한국화재소방학회논문지
    • /
    • 제16권1호
    • /
    • pp.51-59
    • /
    • 2002
  • 신소재 PASCON케이블 트로프로서의 여러 가지 물성을 평가하고, 국내 내연성 시험방법의 적합성을 고찰하였으며, 특히 고속철도 선로변에 사용한 PASCON 케이블 트로프의 법적 타당성과 화재안전성에 대한 연구를 통해 PASCON재질의 적합성을 살펴보았다. 연구결과 국내에서 적용하고 있는 PASCON 케이블 트로프의 재질에 대한 내연성 시험방법(KS M3015)은 국제적인 시험방법(UL 94)과 큰 차이가 없으며, 시험 결과 우수한 성능을 나타내었다. 또한 고속철도 선로변에 설치된 PASCON 케이블 트로프 내에서의 화재 발생시 화재에 대한 확산 경로로서의 가능성이 매우 작으며, 화재에 대한 안전성 또한 매우 높은 것으로 나타났다.

트레이용 난연 전력 케이블의 화재특성에 관한 실험적 연구 (Experimental Study of Fire Characteristics of a Tray Flame Retardant Cable)

  • 김성찬;김정용;방경식
    • 한국안전학회지
    • /
    • 제28권3호
    • /
    • pp.39-43
    • /
    • 2013
  • The present study has been conducted to investigate the fire combustion properties and fire behavior of an IEEE-383 qualified flame retardant cable. The reference reaction rate and reference temperature which are commonly used in pyrolysis model of fire propagation process was obtained by the thermo-gravimetric analysis of the cable component materials. The mass fraction of FR-PVC sheath abruptly decreased near temperature range of $250{\sim}260^{\circ}C$ and its maximum reaction rate was about $2.58{\times}10^{-3}$[1/s]. For the XLPE insulation of the cable, the temperature causing maximum mass fraction change was ranged about $380{\sim}390^{\circ}C$ and it has reached to the maximum reaction rate of $5.10{\times}10^{-3}$[1/s]. The flame retardant cable was burned by a pilot flame meker buner and the burning behavior of the cable was observed during the fire test. Heat release rate of the flame retardant cable was measured by a laboratory scale oxygen consumption calorimeter and the mass loss rate of the cable was calculated by the measured cable mass during the burning test. The representative value of the effective heat of combustion was evaluated by the total released energy integrated by the measured heat release rate and burned mass. This study can contribute to study the electric cable fire and provide the pyrolysis properties for the computational modeling.

유한요소법을 이용한 내화전선의 열해석에 관한 연구 (A Study on the Thermal Analysis of Fire-Resistance Cable using FEM)

  • 오홍석;이상호
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권5호
    • /
    • pp.338-343
    • /
    • 2004
  • In general, the insulation and protective sheaths on electrical conductors are made of combustible substances like PVC, natural or synthetic rubbers, and other organic or synthetic materials. When an electrical fire starts due to overheating of conductors/joints or sparking/arcing, the first thing to ignite is usually the insulation on the cables. When the insulation bums, the produced fumes are very toxic. To solve the problem, we have surely need the fire resistance cable that doesn't bum in a high temperature and emit toxic fume for operating a disaster prevention installation. In this paper, we have simulated the thermal analysis for the fire resistance cable according to the values of current in a overload and a short, and the values of outside flame with the fire resistance cable of the L's company product(600 V, FR-8 : Four Core) using the finite element method(Flux2D).

원자력발전소 케이블 노출 화재 시 기능상실온도 분석 (Cable Functional Failure Temperature Evaluation of Cable Exposed to the Fire of Nuclear Power Plant)

  • 임혁순;배연경;지문구
    • 한국화재소방학회논문지
    • /
    • 제26권1호
    • /
    • pp.10-15
    • /
    • 2012
  • 원전 방화지역에서 화재가 발생할 경우 안전정지 케이블은 단락, 접지, 단선 등 전기적 고장으로 케이블에 고장이 발생하여 그 결과로 안전정지계통의 설비와 기기는 안전정지 기능을 상실할 수 있다. 따라서 원자력 발전소 안전정지계통의 설비와 기능은 다중설계, 계열간 독립 및 분리 원칙에 따라 운영되고 있다. 케이블 화재의 경우 기기 오동작과 오지시 또는 잘못된 계측을 유발할 수 있으며 운전원의 상황 판단에 오류를 일으켜 안전정지 기능을 저해할 수 있다. 본 논문에서는 원자력발전소 케이블 화재 조사 및 원인 분석, 케이블 화재온도 및 기능상실 기준 및 국내 원자력발전소에서 사용중인 케이블을 선정하여 노출 화재 시 케이블 기능상실 온도를 분석하여 케이블 안전성을 확인하였다.

Numerical study to reproduce a real cable tray fire event in a nuclear power plant

  • Jaiho Lee ;Byeongjun Kim;Yong Hun Jung;Sangkyu Lee;Weon Gyu Shin
    • Nuclear Engineering and Technology
    • /
    • 제55권4호
    • /
    • pp.1571-1584
    • /
    • 2023
  • In this study, a numerical analysis was performed as part of an international joint research project to reproduce a real cable tray fire that occurred in the heater bay area of the turbine building of a nuclear power plant. A sensitivity analysis was performed on various input parameters to derive results consistent with the sprinkler activation time obtained from the fire event analysis. For all sensitive parameters, the normalized sprinkler activation time correlated well with the power function of the normalized sprinkler height. A correlation equation was developed to identify the sprinkler activation time at any location when determining the slope or fire growth rate under the conditions assuming a linear or t-squared heat release rate (HRR) time curve. Various cable fire growth assumptions were used to determine which assumption was better to provide the prediction coincident with the information given from the fire event analysis in terms of the sprinkler activation time and total energy generated from cables damaged by fire. In the comprehensive analysis of all the sensitive parameters, the standard deviation of the input parameters increased as the sprinkler height decreased. Within the range of the sensitivity parameter values given in this study, when considering all sprinkler heights, the standard deviation of the cable model change was the largest and that of the overhang position change was the smallest.