DOI QR코드

DOI QR Code

Numerical study to reproduce a real cable tray fire event in a nuclear power plant

  • Jaiho Lee (Department of Reactor System Evaluation, Korea Institute of Nuclear Safety (KINS)) ;
  • Byeongjun Kim (Department of Mechanical Engineering, Chungnam National University) ;
  • Yong Hun Jung (Korea Atomic Energy Research Institute (KAERI)) ;
  • Sangkyu Lee (Department of Reactor System Evaluation, Korea Institute of Nuclear Safety (KINS)) ;
  • Weon Gyu Shin (Department of Mechanical Engineering, Chungnam National University)
  • 투고 : 2022.06.20
  • 심사 : 2023.02.04
  • 발행 : 2023.04.25

초록

In this study, a numerical analysis was performed as part of an international joint research project to reproduce a real cable tray fire that occurred in the heater bay area of the turbine building of a nuclear power plant. A sensitivity analysis was performed on various input parameters to derive results consistent with the sprinkler activation time obtained from the fire event analysis. For all sensitive parameters, the normalized sprinkler activation time correlated well with the power function of the normalized sprinkler height. A correlation equation was developed to identify the sprinkler activation time at any location when determining the slope or fire growth rate under the conditions assuming a linear or t-squared heat release rate (HRR) time curve. Various cable fire growth assumptions were used to determine which assumption was better to provide the prediction coincident with the information given from the fire event analysis in terms of the sprinkler activation time and total energy generated from cables damaged by fire. In the comprehensive analysis of all the sensitive parameters, the standard deviation of the input parameters increased as the sprinkler height decreased. Within the range of the sensitivity parameter values given in this study, when considering all sprinkler heights, the standard deviation of the cable model change was the largest and that of the overhang position change was the smallest.

키워드

과제정보

This work was supported by the Nuclear Safety Research Program through the Korea Foundation of Nuclear Safety (KoFONS) using the financial resources granted by the Nuclear Safety and Security Commission (NSSC) of the Republic of Korea. (NO.1705002, and NO.2106006).

참고문헌

  1. L. Audouin, et al., OECD PRISME project: fires in confined and ventilated nuclear-type multi-compartments-Overview and main experimental results, Fire Saf. J. 62 (2017) 80-101. 
  2. L. Rigollet, et al., Investigating Heat and Smoke Propagation Mechanisms in Multi-compartment Fire Scenarios-Final Report of the PRISME Project, NEA/CSNI, 2017. 
  3. 2019, October S. Bascou, S. Suard, L. Audouin, Benchmark activity of the OECD/NEA PRISME 3 and FIRE projects, in: M. Rowekamp, H.-P. Berg (Eds.), Proceedings of SMiRT 25, 16th International Seminar on Fire Safety in Nuclear Power Plants and Installations, October 28-30, 2019, Ottawa, ONT, Canada, GRS-A-3963, Gesellschaft fur Anlagen- und Reaktorsicherheit (GRS) gGmbH, 2019. Koln, Germany, https://www.grs.de/en/publication/grs-3963. 
  4. Organisation for Economic Co-operation and Development (OECD), Nuclear Energy Agency (NEA), Committee on the Safety of Nuclear Installations (CSNI): PRISME Project Application Report, 14, NEA/CSNI/R, Paris, France, 2012, 2012, https://www.oecd-nea.org/nsd/docs/2012/csni-r2012-14.pdf. 
  5. S. Suard, P. Zavaleta, H. Pretrel, Overview of the OECD PRISME 3 project, Fire Safety and Emergency Preparedness for the Nuclear Industry, FSEP (2019). OTTAWA, Canada. Chal-02465442D, https://hal.archives-ouvertes.fr/hal-02465442. 
  6. Y.H. Jung, D.I. Kang, Benchmark Simulations of Cable Tray Fires in PRISME CFS and CFP Tests, Transactions of the Korean Nuclear Society virtual spring meeting, 2021. 
  7. K. McGrattan, et al., Fire Dynamics Simulator User's Guide, NIST Special publication1019.6, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA, 2013. 
  8. C.S. Lin, J.P. Hsu, Modeling and analysis of a bus fire accident for evaluation of fire safety door using the fire dynamics simulator, Cluster Comput. 22 (6) (2019) 14973-14981.  https://doi.org/10.1007/s10586-018-2464-9
  9. T.S. Shen, Y.H. Huang, S.W. Chien, Using fire dynamic simulation (FDS) to reconstruct an arson fire scene, Build. Environ. 43 (6) (2008) 1036-1045.  https://doi.org/10.1016/j.buildenv.2006.11.001
  10. J.H. Chi, Reconstruction of an inn fire scene using the Fire Dynamics Simulator (FDS) program, J. Forensic Sci. 58 (2013) 227-234.  https://doi.org/10.1111/j.1556-4029.2012.02297.x
  11. W.C. Park, Simulation of smoke control in a subway station fire, Fire Saf. Sci. 6 (2004) 8b, 3. 
  12. C. Caliendo, P. Ciambelli, M.L. De Guglielmo, M.G. Meo, P. Russo, Simulation of people evacuation in the event of a road tunnel fire, Procedia-social and behavioral sciences 53 (2012) 178-188.  https://doi.org/10.1016/j.sbspro.2012.09.871
  13. N. Johansson, M. Ekholm, Variation in results due to user effects in a simulation with FDS, Fire Technol. 54 (2018) 97-116, https://doi.org/10.1007/s10694-017-0674-y. 
  14. K. McGrattan, et al., Cable heat release ignition, and spread in tray installations during fire (CHRISTIFIRE) phase 1: horizontal trays, in: NUREG/CR-7010, 1, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA, 2012. Technical Report. 
  15. P. Zavaleta, R. Hanouzet, T. Beji, Improved assessment of fire spread over horizontal cable trays supported by video fire analysis, Fire Technol. 55 (1) (2019) 233-255.  https://doi.org/10.1007/s10694-018-0788-x
  16. A. Jenft, Etude des interactions entre phenom enes d'incendie et systemes d'extinction a eau. Developpement d'un module d'extinction dans le logiciel FDS, Doctoral dissertation, Universite de Lorraine), 2013 . 
  17. J. Lee, Numerical analysis on the rapid fire suppression using a water mist nozzle in a fire compartment with a door opening, Nucl. Eng. Technol. 51 (2) (2019) 410-423.  https://doi.org/10.1016/j.net.2018.10.026
  18. P. Zavaleta, S. Suard, L. Audouin, Cable tray fire tests with halogenated electric cables in a confined and mechanically-ventilated facility, Fire Mater. 43 (5) (2019) 431-609.  https://doi.org/10.1002/fam.2656
  19. U.S. NRC, Nuclear Power Plant Fire Modeling Analysis Guidelines", NUREG-1934, United States Nuclear Regulatory Commission, Washington, D.C., 2012. 
  20. W. Plumecocq, L. Audouin, J.P. Joret, H. Pretrel, Numerical method for determining water droplets size distributions of spray nozzles using a two-zone model, Nucl. Eng. Des. 324 (2017) 67-77.  https://doi.org/10.1016/j.nucengdes.2017.08.031
  21. U.S. Nrc, Verification and validation of selected fire models for nuclear power plant applications, final report (No. NUREG-1824, supplement 1) (2016). 
  22. J. Lee, Numerical analysis of how ventilation conditions impact compartment fire suppression by water mist, Ann. Nucl. Energy 136 (2020), 107021. 
  23. J. Lee, J. Moon, Numerical analysis of the effect of horizontal distance between a water mist nozzle and ignition source on reduction in heat release rate, Ann. Nucl. Energy 144 (2020), 107560. 
  24. J. Lee, Numerical analysis of the effects of droplets characteristics of water spray on fire suppression, Fire Science and Engineering 33 (6) (2019) 1-8.  https://doi.org/10.7731/KIFSE.2019.33.6.001
  25. M.F. Abdrabbo, A.M. Ayoub, M.A. Ibrahim, A.M.S. Feldin, The effect of water mist droplet size and nozzle flow rate on fire extinction in hanger by using FDS, J. Civ. Environ. Eng. 6 (2016). 
  26. J. Hua, K. Kumar, B.C. Khoo, H. Xue, A numerical study of the interaction of water spray with a fire plume, Fire Saf. J. 37 (7) (2002) 631-657.  https://doi.org/10.1016/S0379-7112(02)00026-7
  27. J.L. Lee, Study of Damageability of Electrical Cables in Simulated Fire Environments. Final Report, Factory Mutual Research Corp., Norwood, MA (USA), 1981. No. EPRI-NP-1767. 
  28. G. Ha, W.G. Shin, J. Lee, Numerical analysis to determine fire suppression time for multiple water mist nozzles in a large fire test compartment, Nucl. Eng. Technol. 53 (4) (2021) 1157-1166. https://doi.org/10.1016/j.net.2020.09.028