• Title/Summary/Keyword: Cable Damage

Search Result 208, Processing Time 0.038 seconds

Refinement of damage identification capability of neural network techniques in application to a suspension bridge

  • Wang, J.Y.;Ni, Y.Q.
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.1
    • /
    • pp.77-93
    • /
    • 2015
  • The idea of using measured dynamic characteristics for damage detection is attractive because it allows for a global evaluation of the structural health and condition. However, vibration-based damage detection for complex structures such as long-span cable-supported bridges still remains a challenge. As a suspension or cable-stayed bridge involves in general thousands of structural components, the conventional damage detection methods based on model updating and/or parameter identification might result in ill-conditioning and non-uniqueness in the solution of inverse problems. Alternatively, methods that utilize, to the utmost extent, information from forward problems and avoid direct solution to inverse problems would be more suitable for vibration-based damage detection of long-span cable-supported bridges. The auto-associative neural network (ANN) technique and the probabilistic neural network (PNN) technique, that both eschew inverse problems, have been proposed for identifying and locating damage in suspension and cable-stayed bridges. Without the help of a structural model, ANNs with appropriate configuration can be trained using only the measured modal frequencies from healthy structure under varying environmental conditions, and a new set of modal frequency data acquired from an unknown state of the structure is then fed into the trained ANNs for damage presence identification. With the help of a structural model, PNNs can be configured using the relative changes of modal frequencies before and after damage by assuming damage at different locations, and then the measured modal frequencies from the structure can be presented to locate the damage. However, such formulated ANNs and PNNs may still be incompetent to identify damage occurring at the deck members of a cable-supported bridge because of very low modal sensitivity to the damage. The present study endeavors to enhance the damage identification capability of ANNs and PNNs when being applied for identification of damage incurred at deck members. Effort is first made to construct combined modal parameters which are synthesized from measured modal frequencies and modal shape components to train ANNs for damage alarming. With the purpose of improving identification accuracy, effort is then made to configure PNNs for damage localization by adapting the smoothing parameter in the Bayesian classifier to different values for different pattern classes. The performance of the ANNs with their input being modal frequencies and the combined modal parameters respectively and the PNNs with constant and adaptive smoothing parameters respectively is evaluated through simulation studies of identifying damage inflicted on different deck members of the double-deck suspension Tsing Ma Bridge.

A practical modification to coaxial cables as damage sensor with TDR in obscured structural members and RC piles

  • Mehmet Ozgur;Sami Arsoy
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.2
    • /
    • pp.133-154
    • /
    • 2023
  • Obscured structural members are mostly under-evaluated during condition assessment due to lack of visual inspection capability. Insufficient information about the integrity of these structural members poses a significant risk for public safety. Time domain reflectometry (TDR) is a novel approach in structural health monitoring (SHM). Ordinary coaxial cables "as is" without a major modification are not suitable for SHM with TDR. The objective of this study is to propose a practical and cost-effective modification approach to commercially available coaxial cables in order to use them as a "cable sensor" for damage detection with the TDR equipment for obscured structural members. The experimental validation and assessment of the proposed modification approach was achieved by conducting 3-point bending tests of the model piles as a representative obscured structural member. It can be noted that the RG59/U-6 and RG6/U-4 cable sensors expose higher strain sensitivity in comparison with non-modified "as is" versions of the cables used. As a result, the cable sensors have the capability of sensing both the presence and the location of a structural damage with a maximum aberration of 3 cm. Furthermore, the crack development can be monitored by the RG59/U-6 cable sensor with a simple calibration.

A Study on unperfected circuiting current of undergrounded cable (지중송전케이블의 불완전 순환전류에 관한 연구)

  • Lee, Kwan-Woo;Lee, Yong-Sung;Kim, Bo-Kyeng;Park, Bok-Ki;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05b
    • /
    • pp.3-6
    • /
    • 2004
  • In this paper, we studied on permissible current of unperfected earthing for cross-bond system. The factors of unperfected earth were jacket damage, cross-bonding mistake, arrestor damage, effect of other circuit but we only studied permissible current of arrestor or jacket damage. In the result, we earned that permissible current of normal 154[[kV]] CV $1C{\times}400SQMM$ cable is 760[A] but current of unperfected earthing cable is 76[A], unperfected earthing confirmed that accident of underground cable could occur. So, we could confirmed that Earthing resistance of unperfected earthing need to limit.

  • PDF

Damage assessment of cable stayed bridge using probabilistic neural network

  • Cho, Hyo-Nam;Choi, Young-Min;Lee, Sung-Chil;Hur, Choon-Kun
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.483-492
    • /
    • 2004
  • This paper presents an efficient algorithm for the estimation of damage location and severity in bridge structures using Probabilistic Neural Network (PNN). Generally, the Back Propagation Neural Network (BPNN)-based damage detection methods need a lot of training patterns for neural network learning process and the optimum architecture of a BPNN is selected by trial and error. In this paper, the PNN instead of the conventional BPNN is used as a pattern classifier. The modal properties of damaged structure are somewhat different from those of undamaged one. The basic idea of proposed algorithm is that the PNN classifies a test pattern which consists of the modal characteristics from damaged structure, how close it is to each training pattern which is composed of the modal characteristics from various structural damage cases. In this algorithm, two PNNs are sequentially used. The first PNN estimates the damage location using mode shape and the results of the first PNN are put into the second PNN for the damage severity estimation using natural frequency. The proposed damage assessment algorithm using the PNN is applied to a cable-stayed bridge to verify its applicability.

Estimation of Cable Damages using Piezo Disk and Optical Fiber Sensors (압전소자와 광섬유센서를 이용한 케이블의 손상평가)

  • Park, Kang-Geun;Kim, Ie-Sung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.3
    • /
    • pp.67-74
    • /
    • 2009
  • Presently means of utilizing sensors such as Piezoelectric(PZT) Element for evaluating the affect of oscillator, strain gauge for analyzing physical changes and use of Fiber Bragg Grating(FBG) Sensor are widely practiced in the field. In this study, PZT and FBG sensors were used to tearing damage of cable systems in these sensors. Cable systems are a construction of elements carrying only tension and no compression or bending in membrane structure. But damage detection of cable systems by using existing safety diagnosis is difficult to detect the characteristic change of overall structural action. If cable snaps are occurred to cable release and tear in tension structures, these are set up a vibration. So, we used piezo-electric materials and result of experiment using this was compared with result of experiment using FBG sensors The purpose of this research is to develop of damage detection method of cable system in tensile stress.

  • PDF

Distribution of Natural Frequency of 2-DOF Approximate Model of Stay Cable to Reduction of Area (단면감소에 따른 사장케이블의 2-자유도 근사모델의 고유진동수 분포)

  • Joe, Yang-Hee;Lee, Hyun-Chol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.147-154
    • /
    • 2014
  • The cable damages of the bridge structures induce very important impact on the structural safety, which implies the close monitoring of the cable damage is required to secure sustained safety of the bridges. Most usual available maintenance techniques are based on the monitoring the change of the natural frequency of the structures by damages. However, existing method are based on vibration method to calculate lateral vibration and system identification can calculate the axial stiffness using sensitivity equation by trial error method. But the frequency study by the longitudinal movement need because of the sag effect in system identification. This study proposes a new method to investigate the damage magnitudes and status. The method improves the accuracies in the magnitudes and status of damages by adopting the natural frequency of longitudinal movement. The study results have been validated by comparing them with the approximate solution of FEM. Thus, the relationship of cable damage and frequency appear with relation that the severe damage has the little frequency. If we know the real frequency we can estimate the cable damage severity using this relationship. This method can be possible the efficient management of the cable damage.

The Loading Mock-up test for Construction Management of Cable net Facade (케이블넷 파사드의 시공관리를 위한 하중재하 Mock-up실험)

  • Moon, Sang-Deok;Ock, Jong-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.28-29
    • /
    • 2014
  • Cable net system openness and flexibility is good high and the large deflection caused no damage to the structure itself. However, cable installation, install complex systems and technologies are needed. In this study, for the basic materials of cable net construction management, cable net expert's advice and mock-up test results are summarized.

  • PDF

Abnormal Response Analysis of a Cable-Stayed Bridge using Gradual Bilinear Method (Gradual Bilinear Method를 이용한 사장교의 케이블 손상응답 해석)

  • Kim, Byeong-Cheol;Park, Ki-Tae;Kim, Tae-Heon;Hwang, Ji-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.60-71
    • /
    • 2014
  • Cable-stayed bridge, which is one of the representative long-spanned bridge, needs prompt maintenances when a stay cable is damaged because it may cause structural failure of the entire bridge. Many researches are being conducted to develop abnormal behavior detection algorithms for the purpose of shortening the reaction time after the occurrence of structural damage. To improve the accuracy of the damage detection algorithm, ample observation data from various kinds of damage responses is needed. However, it is difficult to measure an abnormal response by damaging an existing bridge, numerical simulation can be an effective alternative. In most previous studies, which simulate the damage responses of a cable-stayed bridge, the damages has been considered as a load variation without regard to its stiffness variation. The analyses of using these simplification could not calculate exact responses of damaged structure, though it may reserve a sufficient accuracy for the purpose of bridge design. This study suggests Gradual Bilinear Method (GBM) which simulate the damage responses of cable-stayed bridge considering the stiffness and mass variation, and develops an analysis program. The developed program is verified from the responses of a simple model. The responses of a existing cable-stayed bridge model are analyzed with respect to the fracture delay time and damage ratio. The results of this study can be used to develop and verify the highly accurate abnormal behavior detection algorithm for safety management of architecture/large structures.

Damage Detection in Cable-Stayed Bridges Using Vibration Modes (진동모드를 이용한 사장교의 손상 검색)

  • Kong, Min-Sik;Ka, Hoon;Son, Seok-Ho;Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.113-123
    • /
    • 2006
  • As Cable-stayed bridges were constructed to the long span, they have become bigger and had weaknesses to vibration induced by earthquake, wind and vehicle loads. Structural damages induced by these loads affect the characteristic of vibration modes of structure. Damage detection of cable-stayed bridges by using existing safety diagnosis is difficult to detect the characteristic change of overall structural action. Also it requires very much time and cost. So in this study, the investigation of characteristic change of structural action and the detection of structural damages is analyzed by using characteristic properties of vibration mode before and after structural damage.

Electrical Properties of 6.6kV Cable Termination by Mechanical Damage (기계적 손상에 따른 6.6kV케이블 종단부의 전기적 특성)

  • Baek, Seung-Myeong;Choi, JIn-Wook;Kim, Sang-Hyun;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1299_1300
    • /
    • 2009
  • We show results that examine about electrical properties of XLPE insulated 6.6kV cable termination by mechanical damage. The cable used to produce the cable termination is 6/10kV tray XLPE fire retardant electric cable (6/10kV TFR-CV $35SQMM{\times}1C$) which is domestically made. We apply force to XLPE insulator and made mechanical defect using knife. Defected samples go through the withstand voltage test according to the IEEE std. 48 test regulations and lighting impulse (hereunder, IMP) withstand voltage test regulations. Then the effects of the scars shown during the construction process on electric accidents at the end part are analyzed.

  • PDF