• Title/Summary/Keyword: Cabbage growth rate

Search Result 105, Processing Time 0.03 seconds

Assessment of the Effect of Dimethyl Ether (DME) Combustion on Lettuce and Chinese Cabbage Growth in Greenhouse (온실에서 상추와 배추를 이용한 DME 원료 난방 효율분석)

  • Basak, Jayanta Kumar;Qasim, Waqas;Khan, Fawad;Okyere, Frank Gyan;Lee, Yongjin;Arulmozhi, Elanchezhian;Park, Jihoon;Cho, Wonjun;Kim, Hyeon Tae
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.293-301
    • /
    • 2019
  • The experiment was conducted to determine the performance of DME combustion gas when used as a fuel for DME burner for raising temperature and $CO_2$ concentration in greenhouse and also to examine its effects on chlorophyll content, and fresh and dry weight of lettuce and Chinese cabbage. DME-1 and DME-2 treatments consisted of average DME flow quantity in duct were $17.4m^3min^{-1}$ and $10.2m^3min^{-1}$ respectively to greenhouse-1 and greenhouse-2 and no DME gas was supplied to greenhouse-3 which was left as control (DME-3). DME supply times were $0.5hr\;day^{-1}$, $1hr\;day^{-1}$, $1:30hrs\;day^{-1}$ and $2hrs\;day^{-1}$ on week 1, 2, 3, and 4 respectively. Chlorophyll content and fresh and dry weight of lettuce and Chinese cabbage were measured for each treatment and analyzed through analysis of variance with a significance level of P<0.05. The result of the study showed that $CO_2$ concentration increased up to 265% and 174% and the level of temperature elevated $4.8^{\circ}C$ and $3.1^{\circ}C$ in greenhouse-1 and 2, respectively as compared to greenhouse-3 due to application of DME combustion gas. Although, the same crop management practices were provided in greenhouse-1, 2 and 3 at a same rate, the highest change (p<0.05) of chlorophyll content, fresh weight and dry weight were found from the DME-1 treatment, followed by DME-2. As a result, DME combustion gas that raised the level of temperature and $CO_2$ concentration in the greenhouse-1 and greenhouse-2, might have an effect on growth of lettuce and Chinese cabbage. At end of experiment, the highest fresh and dry weight of lettuce and Chinese cabbage were measured in greenhouse-1 and followed by greenhouse-2. Similarly chlorophyll content of greenhouse-1 and greenhouse-2 were more compared to greenhouse-3. In general, DME was not producing any harmful gas during its combustion period, therefore it can be used as an alternative to conventional fuel such as diesel and liquefied petroleum gas (LPG) for both heating and $CO_2$ supply in winter season. Moreover, endorsed quantify of DME combustion gas for a specified crop can be applied to greenhouse to improve the plant growth and enhance yield.

Study on the effect of heavy elements in agricultural crops and the control measures -I. Effect of chromium on Chinese cabbage and the control measures (중금속원소(重金屬元素)에 의(依)한 농작물(農作物) 피해(被害) 및 그 대책(對策)에 관(關)한 연구(硏究) -크롬(Cr)에 의(依)한 배추의 피해(被害) 및 대책(對策)-)

  • Jeong, Young-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.4
    • /
    • pp.205-210
    • /
    • 1978
  • A study was carried out to examine the effects of chromium added in soil on yield of Chinese cabbage and the responses of lime and lime with compost applied on the plant growth as a control measures. The results are summarized as follows: 1. The yield of fresh leaf weight of Chinese cabbage was apparently decreased in proportion to the increased amount of chromium added. 2. Lime application on the chromium added soil were significantly increased the yield and the responses were more effective with the application of lime and compost. 3. Percentage of chromium in plant and N/2-HCI soluble chromium was decreased with the application of Lime and lime with compost. 4. Significant correlations were observed on total chromium contents in soil with fresh leaf weight of Chinese cabbage. 5. Nitrogen, phosphorus, calcium and magnesium contents in plant were decreased by added rate of chromium.

  • PDF

Effects of Polyacrylamide (PAM) and Potassium-Carboxymethylcellulose (K-CMC) on Soil and Yield of Cabbage (Brassica oleracea L. cv. Empire) (PAM과 K-CMC처리가 토양의 이화학성 및 양배추의 수량에 미치는 영향)

  • Kim, Seog-Kyun;Kim, Kyung-Je
    • Horticultural Science & Technology
    • /
    • v.16 no.2
    • /
    • pp.222-225
    • /
    • 1998
  • The objective of this study was to observe the effects of potassium-carboxymethyl cellulose (K-CMC), which is a natural polymer derivative, and polyacrylamide (PAM), which is a commercial synthetic polymer, on soil physicochemical properties and yields of the cabbage. To increase water absorbing capacity (WAC), hydrophilic carboxymethyl group was introduced to cellulose chain and it was confirmed by FT-IR. WAC was tested by tea-bag method in distilled water and 3% NaCl solution. PAM is slightly more absorptive than K-CMC in distilled water, but in NaCl solution, K-CMC is more absorptive than PAM. Soil particle sizes above $1_{mm}$ were immediately increased from 9.6 to approximately 16.6% by the application of K-CMC and PAM, respectively. Infiltration rates of soil were approximately twice as great as those of the control when conditioned with the K-CMC and PAM treatment. K content of soil treated with K-CMC was significantly higher than those of PAM and control, but the other components of soil chemical properties were not different. The early growth and vegetative production of cabbage in the K-CMC and PAM treatments were significantly higher than the control. The contents of vitamin C were increased with the treatment of K-CMC. It was proposed that K-CMC treatment influence K component of the soil and vitamin C content of the cabbage, therefore, it improved the yields as well as crop quality.

  • PDF

Effect on the Inoculation of Bacillus on the Growth of Chinese Cabbage and Sesame and on Microbial Flora in Soils (Bacillus subtilis 접종이 배추 및 참깨의 생장(生長)과 토양(土壤) 미생물상(微生物相)에 미치는 영향(影響))

  • Kim, Kwang-Sik;Lee, Jae-Pyeong;Kim, Yong-Woong;Rhee, Young-Hwan;Kim, Yeong-Yil
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.4
    • /
    • pp.271-277
    • /
    • 1993
  • An antagonistic bacteria was isolated from rhiaosphere of pepper and corn and identified as Bacillus (B.) subtilis. These B. subtilis B-5 was transformed and marked with the plasmid pCPP4 which possess neomycine resistan. gene. The marked stranins showed growth inhibition to Rhizoctonia (R.) solani, Fusarium (F.) solani, and F. oxysporum in vitro, and were used in studying growth promoting effects on sesame and cabbage. All the identified strains utilize glucose, sucrose, fructose, lactose, mannitol and sorbitol as carbon source, but not rhamnose, and the marked strains also showed characteristics similar to wild-type strains. Germination rate of chinese cabbage and sesame seeds was increased by about 10% or more in the plot to which these strains were inoculated and the effect was higher in soil than in petri dish. The early growth promoting effects of these strains appeared higher, as compared with control plot, in the plots to which B. subtilis B-5 and pathogenic fungi was inoculated together. When the marked strains, B. subtilis B-5NEOr, were inoculated in the rhizosphere of chinese cabbage and sesame with $1.1{\times}10^8CFU/g$ dry soil, the number of inoculated strain was decreased slowly to the level of $10^5{\sim}10^6CFU/g$ dry soil after 4 weeks and the number of Pseudomonas spp. maintanied the level of $10^5CFU/g$ dry soil throught total period, but the number of fungi was decreased rapidly from the early level of $10^8CFU/g$ dry soil to $10^3CFU/g$ dry soil after 4 weeks.

  • PDF

Comparison of quality changes in brined cabbage with deep sea water salt and a commercial brined cabbage product (해양심층수염 절임배추와 시판 절임배추의 품질변화 비교)

  • Lim, Ji Hoon;Jung, Jee Hee;Kim, Dong Soo;Kim, Young Myoung;Kim, Byoung Mok
    • Food Science and Preservation
    • /
    • v.21 no.5
    • /
    • pp.676-687
    • /
    • 2014
  • This study investigated the quality changes in cabbage brined with deep sea water salt and in a commercial brined cabbage product. The subject cabbages were separated into two groups: those manufactured in the Lab (ML) and the commercial brined cabbage product (CP). Each group had three brining treatments: with sun-dried salt (S, CS), refined salt (R, CR), and deep sea water salt (D, CD). The salinity level of the ML group was 2.1~2.3%, higher than that of the CP group (1.1~1.5%). The total plate count (TPC) was detected as 5.0 log CFU/g with the S, R, and D treatments at Day 7, but the growth rate of the TPC with the CS, CR, and CD treatments was faster than that with the S, R, and D treatments (6.9~7.7 log CFU/g). A lactic acid bacteria (LAB) level of 5.0~6.6 log CFU/g was also detected in the S, R, and D samples, but only 7.0~7.6 log CFU/g was detected in the CP groups at Day 14. The instrumental hardness levels of the cabbage brined with the deep sea water salts (D and CD) were 3,971 g and 3,932.4 g, respectively, which were significantly higher than those of the samples that were salted with sun-dried salt and refined salt (p<0.05). As for the sensory attributes, S, D, and CD maintained their marketability scores until the end of the storage period for all the properties. CD presented the highest total free amino acid (478.9 mg%), glutamic acid (107.0 mg%), citric acid (428 mg%), and sodium (189 ppm) contents.

Effects of Differentiated Temperature Based on Growing Season Temperature on Growth and Physiological Response in Chinese Cabbage 'Chunkwang' (고랭지 여름배추 주산지의 기온을 기준으로 한 수준별 온도가 배추 '춘광'의 생육 및 생리반응에 미치는 영향)

  • Son, In-Chang;Moon, Kyung Hwan;Song, Eun Young;Oh, Soonja;Seo, Hyeongho;Moon, Young Eel;Yang, Jinyoung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.3
    • /
    • pp.254-260
    • /
    • 2015
  • Changes of the growth, quality and physiological response of Chinese cabbage cv 'Chunkwang' in response to five different temperature treatments based on climate change scenario were investigated during the growing season. The treatments consisted of normal year temperature $-2.0^{\circ}C$ (I), normal year temperature (II; Control group), normal year temperature $+2.0^{\circ}C$ (III), normal year temperature $+4.0^{\circ}C$ (IV), and normal year temperature $+6.0^{\circ}C$ (V). Regarding fresh weight, number of leaves, and leaf area were high in group IV, and V before the head formation stage, but it has decreased during the later growth period. Rate of frangibleness sympton was the highest in group V as 85.7%, and it was decreased in group IV (64.3%), group III (28.6%), group II (14.3%), and group I (7.1%). Regarding photosynthetic rate, group III, IV, and V showed relatively high photosynthetic rate at 20 DAP but it was reduced dramatically during the later growth period. Transpiration and stomatal conductance showed the similar trend with the photosynthetic rate. When comparing the chlorophyll fluorescence reaction of each treatment group at 50 DAP, Fv/Fm in group I was highest as 8.04 among all treatment groups and the lowest in group IV as 7.15.

Effect of Silicate Fertilizer on Growth, Physiology and Abiotic Stress Tolerance of Chinese Cabbage Seedlings (규산비료 시용이 배추 묘의 생장과 환경내성에 미치는 영향)

  • Vu, Ngoc-Thang;Kim, Si-Hong;Kim, Seung-Yeon;Choi, Ki-Young;Kim, Il-Seop
    • Journal of Bio-Environment Control
    • /
    • v.24 no.2
    • /
    • pp.51-56
    • /
    • 2015
  • The objective of this study was to evaluate the effect of silicate fertilizer on growth, physiology and abiotic stress tolerance of Chinese cabbage seedlings. Five silicate concentrations (8, 16, 32, 64, and 128mM) and control (non-treatment) were applied to Chinese cabbage seedlings twice a week. Three weeks after application of silicate treatment, seedlings were used for treating abiotic stresses and were assessed for growth and physiological characteristics. Growth parameters significantly increased in 8, 16, and 32mM treatments except 64 and 128mM. Total root surface area, total root length, and number of root tips increased in 8, 16 and 32mM treatments, but they decreased in treated seedlings with 64 and 128mM of silicate. The highest growth parameters and root morphology were observed in 8mM treatment. As for the effect on the seedling physiology, transpiration rates decreased while stomatal diffusive resistance increased to increasing silicate concentration. The application of silicate reduced the electrical conductivity, heating and chilling injury index at high and low temperatures. Silicate enhanced drought tolerance of Chinese seedlings by delaying the starting time of wilting point. The starting time of wilting point in the control was 3 days after discontinuation of irrigation, while in the 8, 64 and 128mM of silicate treatments were 4 days, and the 16 and 32mM treatments were 5 days. All plants were wilted after 5 days in control without irrigation whereas it showed in 8mM treatment after 6 days, in 16, 32, 64, 128mM treatments after 7 days.

Fertilizer Responses of Chinese Cabbage to Soil Water Potential (봄배추의 시비반응(施肥反應)에 미치는 토양수분(土壤水分) Potential의 영향(影響))

  • Eom, Ki-Cheol;Son, Eung-Ryong;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.2
    • /
    • pp.98-105
    • /
    • 1983
  • Differences in fertilizer responses of Chinese cabbage to soil water status were investigated in a field experiment. The growth pattern, water use, nutrient uptake, apparent efficiency of fertilizer and yield were analyzed under the 4-different fertilizer levels (N-P-K rate, kg/10a: 0-0-0 Fo, 11.5-10-12.5 Fo.5, 23-30-25 F1.0, 34.5-30-37.5 F1.5 and under the 4-different soil water status levels (non irrigated plot Mo, -0.1 to -1.0 bars M1, -0.1 to -0.5 bars M2, -0.1 to -0.2 bars M3). The soil was Bonryang sandy loam in the experimental farm of the Institute of Agricultural Sciences, Suweon. The growth and yield responses to the fertilizer levels showed a large difference between F0 and F0.5 but little differences were recognized between F0.5, F1.0 and F1.5 when the soil water potentials at 20-cm soil depth were lower than -2.0 bar. Under the well irrigated soil conditions, M2, and M3, the growth and yield responses to the fertilizer levels were significantly increased and the nutrient requirements were increased as well. The total uptake of nutrients decreased as the fertilizer amounts increased when the soil water potentials were low, while the total uptake of nutrients increased when the soil water potentials were high. Therefore, in considering nutrient availability of the applied fertilizers, the soil water status should be taken into account.

  • PDF

Indoor Tank Culture of the Abalone Haliotis discus hannai II. Effects of diets on the growth of young abalone (참전복 Haliotis discus hannai의 육상수조사육에 관한 연구 II. 먹이별 사육실험)

  • JEONG Seong-Chae;JEE Young-Ju;SON Pal-Won
    • Journal of Aquaculture
    • /
    • v.7 no.2
    • /
    • pp.77-87
    • /
    • 1994
  • The study was conducted to develop the suitable abalone's diets for the indoor tank culture. The young abalone Haliotis discus hannai Ino sized ca. 20, 30 and 40 nun in shell length were fed three different diets, dried sea mustard Undaria pinnatifida HARVEY (control), artificial diet and terrestrial plants e. g. Chinese cabbage and Perilla leaf for 2 years. The growth rate of abalones fed an artificial diet was slightly higher than that of abalones from the control. However, the growth rate of abalones from terrestrial plants was significantly lower than that of abalones fed a control or an artificial diet (P< 0.05). The daily feeding rate of young abalones from terrestrial plants was slightly higher than that of abalones from the control. While, that of abalones from an artificial diet was approximately $30\%$ of that of abalones from a control or a terrestrial plants diet. The feed efficiency of abalone from artificail diet was higher than that of abalones from a control or a terrestrial plants diet, and the smaller size of young abalone showed the higher the feed efficiency. The EFA index values ${{\sum}n9/(20:4n6+20:5n3+22:6n3}$ of the dried sea mustard and the artificial diet were 1.26 and 3.64, respectively. These values were favorable, but the value of terrestrial plant, Perilla leaf was 127.00 indicating poor EFA index for normal growth of abalone.

  • PDF

Effects of Nitrate-rich Plant Extracts on the in vitro Ruminal Fermentation and Methane Production (질산염 화합물 함유 식물 추출물이 in vitro 반추위 발효성상과 메탄 발생에 미치는 영향)

  • Lee, Shin Ja;Lee, Su Kyoung;Kim, Min Sung;Lee, Sung Sill
    • Journal of agriculture & life science
    • /
    • v.50 no.2
    • /
    • pp.95-105
    • /
    • 2016
  • This study was conducted to evaluate the effects of nitrate-rich plants extracts on the in vitro rumen fermentation characteristics and rumen methane production. The extracts of nitrate-rich plants, as potato, carrot, chinese cabbage, lettuce and spinach were used in this study. The ruminal fluid was collected from a cannulated Hanwoo cow fed concentrate and timothy in the ratio of 6 to 4. The 20mL of mixture, comparing McDougall's buffer and rumen fluid in the ratio 2 to 1, was dispensed anaerobically 50mL serum bottles containing 0.3g of timothy substrate and extracts of nitrogen-rich plants. The serum bottles were incubated 39℃ for 9, 12, 24, 48 hours. The pH value was decreased by increased incubation times and normal range to 6.31 to 6.96. The dry matter digestibility was significantly(p<0.05) lower in chinese cabbage than in control at 9h incubation time. Ammonia concentration was significantly(p<0.05) lower in potato, chinese cabbage, lettuce than in control and the rumen microbial growth rate was significantly(p<0.05) higher in carrot than in control at 24h incubation time. The concentrations of acetate and propionate was significantly(p<0.05) lower in treatment than in control. The concentration of butyrate was showed a different pattern depending on treatments. Total gas emissions was significantly(p<0.05) lower in chinese cabbage, lettuce, spinach than in control at 12h, 24h incubation time. Methane production was significantly(p<0.05) lower in potato, chinese cabbage, spinach than in control, carbon dioxide production was significantly(p<0.05) lower in treatment than in control. In conclusion, supplementation of the nitrate-rich plant extracts in ruminal fermentation in vitro resulted in decreasing the methane production without adversely affecting the fermentation characteristics. Particularly the chinese cabbage extract was regard as a potential candidate for reducing the methane emission in ruminants.